Bifunctional electrocatalysts are pre-eminent to achieve high capacity, cycling stability, and high Coulombic efficiency for rechargeable hybrid sodium-air batteries. The current work introduces metaphosphate (Na)KCo(PO) nanostructures as noble metal-free bifunctional electrocatalysts suitable for the rechargeable aqueous sodium-air battery. Prepared by the scalable solution combustion method, the metaphosphate class of (Na)KCo(PO) with spherical morphology exhibited robust oxygen reduction as well as evolution activity similar to the state-of-the-art catalysts. NaCo(PO) metaphosphate, when employed as an air cathode in hybrid sodium-air batteries, delivered reasonably low overpotential along with excellent cycling stability with a round-trip energy efficiency of 78%. Cobalt metaphosphates thus form a new class of economical bifunctional catalysts to develop hybrid sodium-air batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c01009DOI Listing

Publication Analysis

Top Keywords

hybrid sodium-air
16
sodium-air batteries
16
bifunctional electrocatalysts
12
cobalt metaphosphates
8
cycling stability
8
sodium-air
5
metaphosphates economic
4
bifunctional
4
economic bifunctional
4
hybrid
4

Similar Publications

Nanostructured transition metal nitrides (TMNs) have been considered as a promising substitute for precious metal catalysts toward ORR due to their multi-electron orbitals, metallic properties, and low cost. To design TMN catalysts with high catalytic activity toward ORR, the intrinsic features of the influencing factor on the catalytic activity toward ORR of nanostructured TMNs need to be investigated. In this paper, titanium nitride (TiN), zirconium nitride (ZrN), and hafnium nitride (HfN) nanoparticles (NPs) are highly efficient and synthesized in one step by the direct current arc plasma.

View Article and Find Full Text PDF

Sodium-air batteries (SABs) are receiving considerable attention for the development of next generation battery alternatives due to their high theoretical energy density (up to 1105 W h kg). However, most of the studies on this technology are still based on organic solvents; in particular, diglyme, which is highly flammable and toxic for the unborn child. To overcome these safety issues, this research investigates the first use of a branched ether solvent 1,2,3-trimethoxypropane (TMP) as an alternative electrolyte to diglyme for SABs.

View Article and Find Full Text PDF

Bifunctional electrocatalysts are pre-eminent to achieve high capacity, cycling stability, and high Coulombic efficiency for rechargeable hybrid sodium-air batteries. The current work introduces metaphosphate (Na)KCo(PO) nanostructures as noble metal-free bifunctional electrocatalysts suitable for the rechargeable aqueous sodium-air battery. Prepared by the scalable solution combustion method, the metaphosphate class of (Na)KCo(PO) with spherical morphology exhibited robust oxygen reduction as well as evolution activity similar to the state-of-the-art catalysts.

View Article and Find Full Text PDF

Sub-Nanometer Pt Clusters on Defective NiFe LDH Nanosheets as Trifunctional Electrocatalysts for Water Splitting and Rechargeable Hybrid Sodium-Air Batteries.

ACS Appl Mater Interfaces

June 2021

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China.

It is challenging to develop highly efficient and stable multifunctional electrocatalysts for improving the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), and the oxygen reduction reaction (ORR) for sustainable energy conversion and storage systems such as water-alkali electrolyzers (WAEs) and hybrid sodium-air batteries (HSABs). In this work, sub-nm Pt nanoclusters (NCs) on defective NiFe layered double hydroxide nanosheets (NiFe LDHs) are synthesized by a facile electrodeposition method. Due to the synergistic effect between Pt NCs and abundant atomic (II) defects, along with hierarchical porous nanostructures, the Pt/NiFe LDHs catalysts exhibit superior trifunctional electrocatalytic activity and durability toward the HER/OER/ORR.

View Article and Find Full Text PDF

Plasma tailored reactive nitrogen species in MOF derived carbon materials for hybrid sodium-air batteries.

Dalton Trans

May 2021

Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China and State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China.

The rational design of efficient and durable electrocatalysts to accelerate sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics is highly desirable for enhancing the efficiency of fuel cells and metal-air batteries. Here, we demonstrated a low-temperature plasma strategy at atmospheric pressure for enhancing the catalytic activity of metal-organic framework derived N-doped carbon nanotubes (MOF-NCNTs) by changing the relative contents of Co-Nx sites, Co-Co bonds and pyridinic-N. The increase of pyridinic-N/pyrrolic-N ratio improves the ORR performance, while unsaturated Co-Nx sites and strong Co-Co bonds promote the OER performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!