Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The combination of plasmonic nanoparticles with semiconductor photocatalysts is a good strategy for synthesizing highly efficient photocatalysts. Such binary nanoparticles have demonstrated enhanced catalytic activity in comparison to either plasmonic catalysts or semiconductor catalysts. However, problematic recovery and limited long-term colloidal stability of those nanoparticles in suspension limit their wide use in catalysis. To palliate to such limitations, we embedded binary nanoparticles in polymer fibers to design photocatalytic membranes. First, we used the selective over-growth of crystalline cerium oxide on the gold nanoparticle template with distinct shapes. Gold nanospheres, gold nanorods, and gold nanotriangles were used as the template for the growth of the cerium oxide domains. Then, the resulting nanoparticles were used to catalyze model reactions in suspensions. The gold nanoparticles covered with patches of cerium oxide outperformed the fully covered and naked nanoparticles in terms of catalytic efficiency. Finally, the most efficient binary nanostructures were successfully embedded in nanofibrous membranes by colloidal electrospinning and used in water remediation experiments in a flow-through reactor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365598 | PMC |
http://dx.doi.org/10.1021/acsami.1c11954 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!