Individuals with Fanconi anemia (FA), a rare genetic bone marrow failure syndrome, have an increased risk of young-onset head and neck squamous cell carcinomas (SCCs) and esophageal SCC. The FA DNA repair pathway is activated upon DNA damage induced by acetaldehyde, a chief alcohol metabolite and one of the major carcinogens in humans. However, the molecular basis of acetaldehyde-induced genomic instability in SCCs of the head and neck and of the esophagus in FA remains elusive. Here, we report the effects of acetaldehyde on replication stress response in esophageal epithelial cells (keratinocytes). Acetaldehyde-exposed esophageal keratinocytes displayed accumulation of DNA damage foci consisting of 53BP1 and BRCA1. At physiologically relevant concentrations, acetaldehyde activated the ATR-Chk1 pathway, leading to S- and G2/M-phase delay with accumulation of the FA complementation group D2 protein (FANCD2) at the sites of DNA synthesis, suggesting that acetaldehyde impedes replication fork progression. Consistently, depletion of the replication fork protection protein Timeless led to elevated DNA damage upon acetaldehyde exposure. Furthermore, FANCD2 depletion exacerbated replication abnormalities, elevated DNA damage, and led to apoptotic cell death, indicating that FANCD2 prevents acetaldehyde-induced genomic instability in esophageal keratinocytes. These observations contribute to our understanding of the mechanisms that drive genomic instability in FA patients and alcohol-related carcinogenesis, thereby providing a translational implication in the development of more effective therapies for SCCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8564632 | PMC |
http://dx.doi.org/10.1002/1878-0261.13072 | DOI Listing |
Gac Med Mex
January 2025
School of Medicine, Pontificia Universidad Javeriana.
Background: In Colombia, gastric cancer is fifth in incidence (12.8 cases per 100,000) and third in mortality (9.9 cases per 100,000).
View Article and Find Full Text PDFFront Genet
January 2025
Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China.
Relationships between cellular senescence and gastrointestinal cancers have gained prominence in recent years. The currently accepted theory suggests that cellular senescence and cancer occurrence exhibit "double-edged sword" effects. Cellular senescence is related to cancer via four "meta-hallmarks" i.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Gastrointestinal and Gland Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.
Purpose: Interleukin-6 (IL-6) is a central factor linking inflammation to cancer. This study aimed to provide a comprehensive assessment of the prognostic value of IL-6 and its immunotherapeutic features using a population-based pan-cancer analysis and comprehensive bioinformatic analysis.
Patients And Methods: In the cohort study, 540 patients were included to explore the prognostic value of serum IL-6 levels in cancer.
Background: Genomic data is essential for clinical decision-making in precision oncology. Bioinformatic algorithms are widely used to analyze next-generation sequencing (NGS) data, but they face two major challenges. First, these pipelines are highly complex, involving multiple steps and the integration of various tools.
View Article and Find Full Text PDFThe replicative polymerase delta is inefficient copying repetitive DNA sequences. Error-prone translesion polymerases have been shown to switch with high-fidelity replicative polymerases to help navigate repetitive DNA. We and others have demonstrated the importance of one such translesion polymerase, polymerase Eta (pol eta), in facilitating replication at genomic regions called common fragile sites (CFS), which are difficult-to-replicate genomic regions that are hypersensitive to replication stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!