Background: Fibular support for the lateral tibial plateau through the proximal tibiofibular joint (PTFJ) results in nonuniform settlement of the tibial plateau in middle-aged and elderly persons and may lead to medial compartment knee osteoarthritis. However, the inclination angle of the PTFJ surface varies widely and may affect nonuniform settlement. The purpose of this case-control study was to assess the association between the inclination angle of the PTFJ surface and medial compartment knee osteoarthritis.

Methods: The fibular inclination angle (FIA) and tibial inclination angle (TIA) of the PTFJ surface were measured using radiographs. Differences of FIA and TIA among groups were assessed with t tests and the odds ratios (ORs) for risk factors of medial compartment knee osteoarthritis were calculated with binary logistic regression analysis.

Results: Forty patients and 40 control participants were included in this case-control study. Patients had both a lower FIA (P=0.005) and TIA (P=0.000) than the controls, and logistic regression analysis showed that FIA (OR =7.000) and TIA (OR =17.000) were risk factors for medial compartment knee osteoarthritis.

Conclusions: A lower inclination angle of the PTFJ surface is associated with a risk of medial compartment knee osteoarthritis. Clinically, early prevention of medial compartment knee osteoarthritis should be considered for middle-aged and elderly persons with low PTFJ inclination angles.

Download full-text PDF

Source
http://dx.doi.org/10.21037/apm-21-1348DOI Listing

Publication Analysis

Top Keywords

medial compartment
28
compartment knee
28
inclination angle
24
knee osteoarthritis
20
ptfj surface
16
angle ptfj
12
association inclination
8
proximal tibiofibular
8
tibiofibular joint
8
surface medial
8

Similar Publications

This technical note explores the novel use of an imageless robotic surgical system for simultaneous unicompartmental knee arthroplasty (UKA) and anterior cruciate ligament reconstruction (ACLR). Knee osteoarthritis (OA) and anterior cruciate ligament (ACL) insufficiency are common conditions that traditionally require separate management. The integration of robotic assistance offers enhanced precision in surgical procedures, addressing both medial compartment OA and ACL insufficiency in a single operation.

View Article and Find Full Text PDF

Introduction: Unicondylar knee replacement (UKR) is a surgical procedure frequently performed to treat medial compartment osteoarthritis, offering advantages such as quicker recovery and preservation of knee kinematics. However, complications can arise, including periprosthetic fractures. Patella fractures in the context of UKR are particularly challenging due to the presence of the implant.

View Article and Find Full Text PDF

Introduction: There is a lack of clinical evidence supporting the decision-making process between high tibial osteotomy (HTO) and unicomparmental knee arthroplasty (UKA) in gray zone indication, such as moderate medial osteoarthritis with moderate varus alignment. This study compared the outcomes between HTO and UKA in such cases and assessed the risk factor for not maintaining clinical improvements.

Materials And Methods: We retrospectively reviewed 65 opening-wedge HTOs and 55 UKAs with moderate medial osteoarthritis (Kellgren-Lawrence grade ≥ 3 and Ahlback grade < 3) and moderate varus alignment (5°< Hip-Knee-Ankle angle < 10°) over 3 years follow-up.

View Article and Find Full Text PDF

The optimal procedure for isolated end-stage medial compartment knee osteoarthritis (OA) remains uncertain, with debate persisting between unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA). The aim of this narrative review is to evaluate current outcome measures in knee arthroplasty (KA) and explore how evolving patient populations and technological advancements may necessitate the use of different patient-reported outcome measures (PROMs) for evaluating UKA. While UKA offers potential advantages over TKA in early pain relief and functional outcomes, most randomised control trials using traditional PROMs have failed to show definitive superiority.

View Article and Find Full Text PDF

Dynamic biomechanical effects of medial meniscus tears on the knee joint: a finite element analysis.

J Orthop Surg Res

January 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.

Background: Meniscus tears can change the biomechanical environment of the knee joint and might accelerate the development of osteoarthritis. The aim of this study was to investigate the dynamic biomechanical effects of different medial meniscus tear positions and tear gaps on the knee during walking.

Methods: Seven finite element models of the knee joint were constructed, including the intact medial meniscus (IMM), radial stable tears in the anterior, middle, and posterior one-third regions of the medial meniscus (RSTA, RSTM, RSTP), and the corresponding unstable tears (RUTA, RUTM, RUTP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!