Reticular chemistry and methane storage materials have been predominately focused on finite metal-cluster-based metal-organic frameworks (MOFs). In contrast, MOFs constructed from infinite rod secondary building units (SBUs), i.e., rod MOFs, are less developed, and the existing ones are typically built from simple one-way helical, zigzag, or (mixed)polyhedron SBUs. Herein, inspired by a recent unveiled structure of Zn(HO)(BTP) and by means of an amide-functionalized preliminary single tricarboxylate, a subsequent mixed tricarboxylate, and dicarboxylate linkers, an intricate three-way rod MOF and the next three isoreticular three-way rod MOFs have been successfully realized, namely, 3W-ROD-1 and 3W-ROD-2-X (X = -OH, -F, and -CH), respectively. The structural analyses disclosed that the four compounds were constructed from unprecedented three-way invariant nonintersecting trigonal rod-packing SBUs cross-linked via the noncovalent-interaction-driven self-assembly of pseudo hexacarboxylates with the original tricarboxylate or different functional ditopic linkers, resulting in cage-like pore geometries accessible via ultramicroporous apertures concomitant with the complex topology transitivity, namely, 18 42 and 18 44. Sorption studies show that the apparent surface areas of these materials are among the most highly porous materials for rod MOFs. Due to the presence of favorable pocket sites created by X, ketone, and proximal amide groups as revealed by Monte Carlo molecular dynamics (MCMD) computational calculations, the MOFs exhibit impressive methane storage working capacities, outperforming the well-known rod Ni-MOF-74 and representing the highest values among rigid rod MOFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c04946 | DOI Listing |
Acta Crystallogr C Struct Chem
January 2025
College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China.
A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China.
Heavy metal ion pollution poses a serious threat to the natural environment and human health. Photoreduction through Bi-based photocatalysts is regarded as an advanced green technology for solving environmental problems. However, their photocatalytic activity is limited by the rapid recombination of photogenerated e and h pairs and a low photo-quantum efficiency.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
Layered double hydroxides (LDHs) can serves as catalysts for CO photocatalytic reduction (COPR). However, the conventionally synthesized LDHs undergo undesired aggregation, which results in an insufficient number of active sites and limits the desirable electron transfer required for COPR. The metal-organic framework (MOF) template-grown LDHs demonstrate excellent promise for exploiting the strengths of both MOFs and LDHs.
View Article and Find Full Text PDFChemistry
November 2024
Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel.
The branched metal-organic frameworks (MOFs) are the first superstructures of this kind, and the growth mechanism may explain crystal shapes of other materials. The mechanism of the formation of fascinating structures having a hedrite, sheaf or spherulite appearance are detailed. The branching can be controlled, resulting in crystals that either exhibit multiple generations of branching or a single generation.
View Article and Find Full Text PDFDalton Trans
October 2024
Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, West Bengal, India.
We report the luminescence-based detection of Group-1 carcinogen formaldehyde (FA) and Cr(VI)-oxoanions with a mesoporous Mn(II)-MOF (1), featuring a uninodal 4-c net topology and linear 1D square channels forming a polymeric 2D network. The Mn-MOF , [Mn(phen)(hia)(HO)] was solvothermally constructed using π-conjugated, chelating phenanthroline (phen) and µ-η:η binding 5-hydroxyisophthalic acid (hia) ligands. The 2D rod-like crystallites of 1 demonstrated excellent phase purity, high thermal and photostability, and robustness under harsh conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!