MOV10 is an RNA helicase that associates with the RNA-induced silencing complex component Argonaute (AGO), likely resolving RNA secondary structures. MOV10 also binds the Fragile X mental retardation protein to block AGO2 binding at some sites and associates with UPF1, a principal component of the nonsense-mediated RNA decay pathway. MOV10 is widely expressed and has a key role in the cellular response to viral infection and in suppressing retrotransposition. Posttranslational modifications of MOV10 include ubiquitination, which leads to stimulation-dependent degradation, and phosphorylation, which has an unknown function. MOV10 localizes to the nucleus and/or cytoplasm in a cell type-specific and developmental stage-specific manner. Knockout of Mov10 leads to embryonic lethality, underscoring an important role in development where it is required for the completion of gastrulation. MOV10 is expressed throughout the organism; however, most studies have focused on germline cells and neurons. In the testes, the knockdown of Mov10 disrupts proliferation of spermatogonial progenitor cells. In brain, MOV10 is significantly elevated postnatally and binds mRNAs encoding cytoskeleton and neuron projection proteins, suggesting an important role in neuronal architecture. Heterozygous Mov10 mutant mice are hyperactive and anxious and their cultured hippocampal neurons have reduced dendritic arborization. Zygotic knockdown of Mov10 in Xenopus laevis causes abnormal head and eye development and mislocalization of neuronal precursors in the brain. Thus, MOV10 plays a vital role during development, defense against viral infection and in neuronal development and function: its many roles and regulation are only beginning to be unraveled. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799784 | PMC |
http://dx.doi.org/10.1002/wrna.1682 | DOI Listing |
BMC Genom Data
November 2024
Youjiang Medical University for Nationalities, Baise, 533000, China.
This multi-omics study delves into the expression patterns of PIWIL genes and their correlation with hepatocellular carcinoma (HCC) progression, utilizing whole transcriptome sequencing, bioinformatics, and reverse transcription quantitative polymerase chain reaction (RT-qPCR) in mice. We identified differential expression levels of PIWIL genes between HCC and control tissues and analyzed their roles within the competing endogenous RNA (ceRNA) network related to regulatory non-coding RNA-mediated gene silencing (RNGS). Our findings showed that Piwil1 and Piwil4 were overexpressed while Piwil2 is underexpressed.
View Article and Find Full Text PDFMol Med Rep
January 2025
Department of Medical Oncology, Taihe County People's Hospital, Fuyang, Anhui 236600, P.R. China.
Objective: This study investigated the genetic and epigenetic mechanisms underlying the comorbidity patterns of five substance dependence diagnoses (SDs; alcohol, AD; cannabis, CaD; cocaine, CoD; opioid, OD; tobacco, TD).
Methods: A latent class analysis (LCA) was performed on 31,197 individuals (average age 42±11 years; 49% females) from six cohorts to identify comorbid DSM-IV SD patterns. In subsets of this sample, we tested SD-latent classes with respect to polygenic burden of psychiatric and behavioral traits and epigenome-wide changes in three population groups.
Nucleic Acids Res
November 2024
Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany.
The RNA genome of the SARS-CoV-2 virus encodes for four structural proteins, 16 non-structural proteins and nine putative accessory factors. A high throughput analysis of interactions between human and SARS-CoV-2 proteins identified multiple interactions of the structural Nucleocapsid (N) protein with RNA processing factors. The N-protein, which is responsible for packaging of the viral genomic RNA was found to interact with two RNA helicases, UPF1 and MOV10 that are involved in nonsense-mediated mRNA decay (NMD).
View Article and Find Full Text PDFRNA Biol
January 2024
Department of Biological Sciences, University of Denver, Denver, CO, USA.
Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability and is caused by mutations in the gene encoding the Fragile X messenger ribonucleoprotein (FMRP). FMRP is an evolutionarily conserved and neuronally enriched RNA-binding protein (RBP) with functions in RNA editing, RNA transport, and protein translation. Specific target RNAs play critical roles in neurodevelopment, including the regulation of neurite morphogenesis, synaptic plasticity, and cognitive function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!