There is limited knowledge on how the association of trees with different mycorrhizal types shapes soil microbial communities in the context of changing tree diversity levels. We used arbuscular (AM) and ectomycorrhizal (EcM) tree species as con- and heterospecific tree species pairs (TSPs), which were established in plots of three tree diversity levels including monocultures, two-species mixtures and multi-tree species mixtures in a tree diversity experiment in subtropical China. We found that the tree mycorrhizal type had a significant effect on fungal but not bacterial alpha diversity. Furthermore, only EcM but not AM TSPs fungal alpha diversity increased with tree diversity, and the differences between AM and EcM TSPs disappeared in multi-species mixtures. Tree mycorrhizal type, tree diversity and their interaction had significant effects on fungal community composition. Neither fungi nor bacteria showed any significant compositional variation in TSPs located in multi-species mixtures. Accordingly, the most influential taxa driving the tree mycorrhizal differences at low tree diversity were not significant in multi-tree species mixtures. Collectively, our results indicate that tree mycorrhizal type is an important factor determining the diversity and community composition of soil microbes, and higher tree diversity levels promote convergence of the soil microbial communities. SIGNIFICANCE STATEMENT: More than 90% of terrestrial plants have symbiotic associations with mycorrhizal fungi which could influence the coexisting microbiota. Systematic understanding of the individual and interactive effects of tree mycorrhizal type and tree species diversity on the soil microbiota is crucial for the mechanistic comprehension of the role of microbes in forest soil ecological processes. Our tree species pair (TSP) concept coupled with random sampling within and across the plots, allowed us the unbiased assessment of tree mycorrhizal type and tree diversity effects on the tree-tree interaction zone soil microbiota. Unlike in monocultures and two-species mixtures, we identified species-rich and converging fungal and bacterial communities in multi-tree species mixtures. Consequently, we recommend planting species-rich mixtures of EcM and AM trees, for afforestation and reforestation regimes. Specifically, our findings highlight the significance of tree mycorrhizal type in studying 'tree diversity - microbial diversity - ecosystem function' relationships.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.15690DOI Listing

Publication Analysis

Top Keywords

tree diversity
36
tree mycorrhizal
32
mycorrhizal type
28
tree
21
type tree
16
tree species
16
diversity
15
soil microbiota
12
diversity levels
12
multi-tree species
12

Similar Publications

Climate Change Drives Changes in the Size and Composition of Fungal Communities Along the Soil-Seedling Continuum of Schima superba.

Mol Ecol

January 2025

ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China.

Plant microbiomes have a major influence on forest structure and functions, as well as tree fitness and evolution. However, a comprehensive understanding of variations in fungi along the soil-plant continuum, particularly within tree seedlings, under global warming is lacking. Here, we investigated the dynamics of fungal communities across different compartments (including bulk soil and rhizosphere soil) and plant organs (including the endosphere of roots, stems and leaves) of Schima superba seedlings exposed to experimental warming and drought using AccuITS absolute quantitative sequencing.

View Article and Find Full Text PDF

Peptide therapeutics, a major class of medicines, have achieved remarkable success across diseases such as diabetes and cancer, with landmark examples such as GLP-1 receptor agonists revolutionizing the treatment of type-2 diabetes and obesity. Despite their success, designing peptides that satisfy multiple conflicting objectives, such as target binding affinity, solubility, and membrane permeability, remains a major challenge. Classical drug development and structure-based design are ineffective for such tasks, as they fail to optimize global functional properties critical for therapeutic efficacy.

View Article and Find Full Text PDF

In 2022, a community-academic collaborative team published 5 key recommendations for developing a national action plan to advance the sexual and reproductive health and rights (SRHR) of women living with HIV in Canada. In 2023, a national gathering was convened to strategize implementation of the recommendations across policy, practice, and research settings. Discussions highlighted that meaningful engagement of women living with HIV (recommendation 1) is foundational to implementing the other recommendations.

View Article and Find Full Text PDF

Understanding the evolutionary processes underlying range-wide genomic variation is critical to designing effective conservation and restoration strategies. Evaluating the influence of connectivity, demographic change and environmental adaptation for threatened species can be invaluable to proactive conservation of evolutionary potential. In this study, we assessed genomic variation across the range of Fraxinus latifolia, a foundational riparian tree native to western North America recently exposed to the invasive emerald ash borer (Agrilus planipennis; EAB).

View Article and Find Full Text PDF

Tree growth and lifespan are key determinants of forest dynamics, and ultimately control carbon stocks. Warming and increasing CO have been observed to increase growth but such increases may not result in large net biomass gains due to trade-offs between growth and lifespan. A deeper understanding of the nature of the trade-off and its potential spatial variation is crucial to improve predictions of the future carbon sink.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!