Nuclear exportin 1 facilitates turnip mosaic virus infection by exporting the sumoylated viral replicase and by repressing plant immunity.

New Phytol

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.

Published: November 2021

Exportin 1/XPO1 is an important nuclear export receptor that binds directly to cargo proteins and translocates the cargo proteins to the cytoplasm. To understand XPO1 protein functions during potyvirus infections, we investigated the nuclear export of the NIb protein encoding the RNA-dependent RNA polymerase (RdRp) of turnip mosaic virus (TuMV). Previously, we found that NIb is transported to the nucleus after translation and sumoylated by the sumoylation (small ubiquitin-like modifier) pathway to support viral infection. Here, we report that XPO1 interacts with NIb to facilitate translocation from the nucleus to the viral replication complexes (VRCs) that accumulate in the perinuclear regions of TuMV-infected cells. XPO1 contains two NIb-binding domains that recognize and interact with NIb in the nucleus and in the perinuclear regions, respectively, which facilitates TuMV replication. Moreover, XPO1 is involved in nuclear export of the sumoylated NIb and host factors tagged with SUMO3 that is essential for suppression of plant immunity in the nucleus. Deficiencies of XPO1 in Arabidopsis and Nicotiana benthamiana plants inhibit TuMV replication and infection. These data demonstrate that XPO1 functions as a host factor in TuMV infection by regulating NIb nucleocytoplasmic transport and plant immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.17657DOI Listing

Publication Analysis

Top Keywords

plant immunity
12
nuclear export
12
turnip mosaic
8
mosaic virus
8
cargo proteins
8
perinuclear regions
8
tumv replication
8
xpo1
6
nib
6
nuclear
4

Similar Publications

MiR8523 negatively regulates the immunity of Plutella xylostella against entomopathogenic fungus Isaria cicadae by targeting PxSpz5.

Int J Biol Macromol

January 2025

Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China. Electronic address:

The diamondback moth, Plutella xylostella is a notorious pest and has developed serious resistance to insecticides. Entomopathogenic fungi (EPF) have been developed as eco-friendly alternatives to insecticides. Insects rely on their immunity to defend against fungi.

View Article and Find Full Text PDF

Isatidis root polysaccharides ameliorates post-weaning diarrhea by promoting intestinal health and modulating the gut microbiota in piglets.

Vet Q

December 2025

Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.

This study aimed to investigate the effects of dietary isatidis root polysaccharide (IRP) on diarrhea, immunity, and intestinal health in weanling piglets. Forty healthy piglets were randomly assigned to five groups receiving varying dosages of IRP. The findings indicated that different concentrations of IRP significantly reduced diarrhea scores ( < 0.

View Article and Find Full Text PDF

Ubiquitination of OsCSN5 by OsPUB45 activates immunity by modulating the OsCUL3a-OsNPR1 module.

Sci Adv

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

The COP9 signalosome (CSN) is a highly conserved protein complex in eukaryotes, with CSN5 serving as its critical catalytic subunit. However, the role of CSN5 in plant immunity is largely unexplored. Here, we found that suppression of in rice enhances resistance against the fungal pathogen and the bacterial pathogen pv.

View Article and Find Full Text PDF

Small interfering RNAs generated from the terminal panhandle structure of negative-strand RNA virus promote viral infection.

PLoS Pathog

January 2025

State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Virus-derived small interfering RNAs (vsiRNAs) have been widely recognized to play an antiviral immunity role. However, it is unclear whether vsiRNAs can also play a positive role in viral infection. Here, we characterized three highly abundant vsiRNAs mapped to the genomic termini of rice stripe virus (RSV), a negative-strand RNA virus transmitted by insect vectors.

View Article and Find Full Text PDF

Pseudomonas syringae lytic transglycosylase HrpH interacts with host ubiquitin ligase ATL2 to modulate plant immunity.

Cell Rep

January 2025

State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Pseudomonas syringae deploys a type III secretion system (T3SS) to deliver effector proteins to facilitate infection of plant cells; however, little is known about the direct interactions between T3SS components and plants. Here, we show that the specialized lytic transglycosylase (SLT) domain of P. syringae pv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!