Developing a boosted decision tree regression prediction model as a sustainable tool for compressive strength of environmentally friendly concrete.

Environ Sci Pollut Res Int

Civil Engineering Department, College of Engineering, Komar University of Science and Technology, Sulaimany, 46001, Kurdistan Region, Iraq.

Published: December 2021

One of the most significant parameters in concrete design is compressive strength. Time and money could be saved if the compressive strength of concrete is accurately measured. In this study, two machine learning models, namely, boosted decision tree regression (BDTR) and support vector machine (SVM), were developed to predict concrete compressive strength (CCS) using a complete dataset through the previous scientific studies. Eight concrete mixture parameters were used as the input dataset. Four statistical indices, namely the coefficient of determination (R) and root mean square error (RMSE), mean absolute error (MAE), and RMSE-Standard Deviation Ratio (RSR), were used to illustrate the efficiency of the proposed models. The results show that the BDTR model outperformed SVM model with the overall result of R=0.86 and RMSE=6.19 and MAE=4.91 and RSR=0.37, respectively. The results of this study suggest that the compressive strength of high-performance concrete (HPC) can be accurately calculated using the proposed BDTR model.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-15662-zDOI Listing

Publication Analysis

Top Keywords

compressive strength
20
boosted decision
8
decision tree
8
tree regression
8
bdtr model
8
concrete
6
compressive
5
strength
5
developing boosted
4
regression prediction
4

Similar Publications

Toughening of thermoset composites using glass/polypropylene commingled stitching yarns.

Heliyon

January 2025

Portsmouth Centre for Advanced Materials and Manufacturing (PCAMM), School of Electrical and Mechanical Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, UK.

This paper investigates the damage resistance and tolerance of thermoset composite laminates stitched by glass and hybrid glass/polypropylene commingled yarns. Different impact energies (10-70 J) were applied to stitched composite laminates before compression after impact (CAI) tests were conducted. The results showed that, except for 70J, commingled yarn-stitched laminates absorbed more energy than glass-stitched laminates.

View Article and Find Full Text PDF

Ecological concrete by partially substitution of cement with Cameroonian corn stover ash.

Heliyon

January 2025

Mechanics Laboratory, Doctoral Training Unit in Engineering Sciences, Doctoral School of Fundamental and Applied Sciences, University of Douala, P.O. Box: 2701, Douala, Cameroon.

This study focuses on the influence of the partial substitution of cement by Cameroonian corn stover ash (CCSA) on the physical and mechanical behavior of concrete. For this, as materials used, one has first the corn stovers coming from the Bandjoun town in the Koung-khi division, in the West region of Cameroon, which are used to obtain the ashes, while the sand used, came from the Sanaga River in the coastal region of Cameroon. In order to obtain the CCSA, the corn stover is calcined in an oven at 600 °C for 6 h and then characterized; the characterization included infrared spectrometry, X-ray fluorescence spectrometry, fineness of grinding, and absolute density.

View Article and Find Full Text PDF

Sustainable application of waste gangue mortar in coal mine tunnel support.

Sci Rep

January 2025

School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an, 710048, China.

With the increase in coal mining depths, soft and fractured roadway surrounding rocks require grouting and a sprayed protective layer for maintenance. Simultaneously, extensive accumulation of coal gangue causes diverse environmental issues. To enhance on-site coal gangue utilization, this study replaced river sand and cement with coal gangue to develop a novel cement-based mortar for supporting coal mine roadways.

View Article and Find Full Text PDF

This study investigates the deposition of tantalum (Ta) coatings on carbon foams using the chemical vapor deposition (CVD) method to enhance their compressive strength. Two types of open-cell carbon foams, CF-1 and CF-2, with different strut diameters, were examined. The morphology and uniformity of the coatings were characterized, and the effect of coating thickness on the compressive strength of the foams was systematically analyzed.

View Article and Find Full Text PDF

We report the in situ synthesis of silver-containing polyisocyanurate (Ag-PI) gels via the self-polymerization of isocyanate-containing organic molecules (Desmodur N75) catalyzed by silver nitrate (AgNO) in ,'-dimethylformamide, which acts as both the solvent and reducing agent. Fourier transform infrared spectroscopy and X-ray diffraction confirmed the formation of polyisocyanurate and metallic silver nanoparticles. Gelation occurred in 30 min at 30 °C for Ag-PI, compared to 24 h for the uncatalyzed system, demonstrating AgNO's catalytic role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!