Here, we used pre-treatment CT images to develop and evaluate a radiomic signature that can predict the expression of programmed death ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC). We then verified its predictive performance by cross-referencing its results with clinical characteristics. This two-center retrospective analysis included 125 patients with histologically confirmed NSCLC. A total of 1287 hand-crafted radiomic features were observed from manually determined tumor regions. Valuable features were then selected with a ridge regression-based recursive feature elimination approach. Machine learning-based prediction models were then built from this and compared each other. The final radiomic signature was built using logistic regression in the primary cohort, and then tested in a validation cohort. Finally, we compared the efficacy of the radiomic signature to the clinical model and the radiomic-clinical nomogram. Among the 125 patients, 89 were classified as having PD-L1 positive expression. However, there was no significant difference in PD-L1 expression levels determined by clinical characteristics (P = 0.109-0.955). Upon selecting 9 radiomic features, we found that the logistic regression-based prediction model performed the best (AUC = 0.96, P < 0.001). In the external cohort, our radiomic signature showed an AUC of 0.85, which outperformed both the clinical model (AUC = 0.38, P < 0.001) and the radiomics-nomogram model (AUC = 0.61, P < 0.001). Our CT-based hand-crafted radiomic signature model can effectively predict PD-L1 expression levels, providing a noninvasive means of better understanding PD-L1 expression in patients with NSCLC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8554954 | PMC |
http://dx.doi.org/10.1007/s10278-021-00484-9 | DOI Listing |
J Anus Rectum Colon
January 2025
Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
Objectives: This study explored the clinical utility of CT radiomics-driven machine learning as a predictive marker for chemotherapy response in colorectal liver metastasis (CRLM) patients.
Methods: We included 150 CRLM patients who underwent first-line doublet chemotherapy, dividing them into a training cohort (n=112) and a test cohort (n=38). We manually delineated three-dimensional tumor volumes, selecting the largest liver metastasis for measurement, using pretreatment portal-phase CT images and extracted 107 radiomics features.
J Multidiscip Healthc
January 2025
Department of Nuclear Medicine, The First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, People's Republic of China.
Objective: This study aimed to explore the value of a radiomic nomogram based on contrast-enhanced computed tomography (CECT) for differentiating benign and malignant solid-containing renal masses.
Materials And Methods: A total of 122 patients with pathologically confirmed benign (n=47) or malignant (n=75) solid-containing renal masses were enrolled in this study. Radiomic features were extracted from the arterial, venous and delayed phases and further analysed by dimensionality reduction and selection.
Front Surg
January 2025
Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: To accurately identify spread through air spaces (STAS) in clinical stage IA lung adenocarcinoma, our study developed a non-invasive and interpretable biomarker combining clinical and radiomics features using preoperative CT.
Methods: The study included a cohort of 1,325 lung adenocarcinoma patients from three centers, which was divided into four groups: a training cohort ( = 930), a testing cohort ( = 238), an external validation 1 cohort ( = 93), and 2 cohort ( = 64). We collected clinical characteristics and semantic features, and extracted radiomics features.
BMC Med
January 2025
Department of Nuclear Medicine, West China Hospital, Sichuan University, Guoxue Alley, Address: No.37, Chengdu City, Sichuan, 610041, China.
Background: This study aimed to construct a radiomics-based imaging biomarker for the non-invasive identification of transformed follicular lymphoma (t-FL) using PET/CT images.
Methods: A total of 784 follicular lymphoma (FL), diffuse large B-cell lymphoma, and t-FL patients from 5 independent medical centers were included. The unsupervised EMFusion method was applied to fuse PET and CT images.
Radiol Med
January 2025
Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!