Here, we used pre-treatment CT images to develop and evaluate a radiomic signature that can predict the expression of programmed death ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC). We then verified its predictive performance by cross-referencing its results with clinical characteristics. This two-center retrospective analysis included 125 patients with histologically confirmed NSCLC. A total of 1287 hand-crafted radiomic features were observed from manually determined tumor regions. Valuable features were then selected with a ridge regression-based recursive feature elimination approach. Machine learning-based prediction models were then built from this and compared each other. The final radiomic signature was built using logistic regression in the primary cohort, and then tested in a validation cohort. Finally, we compared the efficacy of the radiomic signature to the clinical model and the radiomic-clinical nomogram. Among the 125 patients, 89 were classified as having PD-L1 positive expression. However, there was no significant difference in PD-L1 expression levels determined by clinical characteristics (P = 0.109-0.955). Upon selecting 9 radiomic features, we found that the logistic regression-based prediction model performed the best (AUC = 0.96, P < 0.001). In the external cohort, our radiomic signature showed an AUC of 0.85, which outperformed both the clinical model (AUC = 0.38, P < 0.001) and the radiomics-nomogram model (AUC = 0.61, P < 0.001). Our CT-based hand-crafted radiomic signature model can effectively predict PD-L1 expression levels, providing a noninvasive means of better understanding PD-L1 expression in patients with NSCLC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8554954PMC
http://dx.doi.org/10.1007/s10278-021-00484-9DOI Listing

Publication Analysis

Top Keywords

radiomic signature
12
hand-crafted radiomic
8
pd-l1 expression
8
expression levels
8
non-small cell
8
cell lung
8
lung cancer
8
clinical characteristics
8
125 patients
8
radiomic features
8

Similar Publications

Radiomics-based Machine Learning Approach to Predict Chemotherapy Responses in Colorectal Liver Metastases.

J Anus Rectum Colon

January 2025

Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.

Objectives: This study explored the clinical utility of CT radiomics-driven machine learning as a predictive marker for chemotherapy response in colorectal liver metastasis (CRLM) patients.

Methods: We included 150 CRLM patients who underwent first-line doublet chemotherapy, dividing them into a training cohort (n=112) and a test cohort (n=38). We manually delineated three-dimensional tumor volumes, selecting the largest liver metastasis for measurement, using pretreatment portal-phase CT images and extracted 107 radiomics features.

View Article and Find Full Text PDF

CECT-Based Radiomic Nomogram of Different Machine Learning Models for Differentiating Malignant and Benign Solid-Containing Renal Masses.

J Multidiscip Healthc

January 2025

Department of Nuclear Medicine, The First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, People's Republic of China.

Objective: This study aimed to explore the value of a radiomic nomogram based on contrast-enhanced computed tomography (CECT) for differentiating benign and malignant solid-containing renal masses.

Materials And Methods: A total of 122 patients with pathologically confirmed benign (n=47) or malignant (n=75) solid-containing renal masses were enrolled in this study. Radiomic features were extracted from the arterial, venous and delayed phases and further analysed by dimensionality reduction and selection.

View Article and Find Full Text PDF

Background: To accurately identify spread through air spaces (STAS) in clinical stage IA lung adenocarcinoma, our study developed a non-invasive and interpretable biomarker combining clinical and radiomics features using preoperative CT.

Methods: The study included a cohort of 1,325 lung adenocarcinoma patients from three centers, which was divided into four groups: a training cohort ( = 930), a testing cohort ( = 238), an external validation 1 cohort ( = 93), and 2 cohort ( = 64). We collected clinical characteristics and semantic features, and extracted radiomics features.

View Article and Find Full Text PDF

Virtual biopsy for non-invasive identification of follicular lymphoma histologic transformation using radiomics-based imaging biomarker from PET/CT.

BMC Med

January 2025

Department of Nuclear Medicine, West China Hospital, Sichuan University, Guoxue Alley, Address: No.37, Chengdu City, Sichuan, 610041, China.

Background: This study aimed to construct a radiomics-based imaging biomarker for the non-invasive identification of transformed follicular lymphoma (t-FL) using PET/CT images.

Methods: A total of 784 follicular lymphoma (FL), diffuse large B-cell lymphoma, and t-FL patients from 5 independent medical centers were included. The unsupervised EMFusion method was applied to fuse PET and CT images.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to create machine learning models to predict pathological complete response (pCR) in breast cancer patients after neoadjuvant chemotherapy using data from FDG PET/CT scans.
  • 52 newly diagnosed breast cancer patients had their tumors and lymph node metastases segmented, and various features, both clinical and radiomic, were collected and analyzed.
  • The results indicated that models using radiomic features from PET scans, particularly when including data from lymph nodes, performed better in predicting pCR compared to those based on clinical or CT data alone.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!