Maintaining both cell-cell and cell-extracellular matrix (ECM) interactions is often a critical component of three-dimensional (3D) tissue regeneration. In high-density cell condensation systems, lack of appropriate cell-ECM interactions can result in limited and/or slow cell differentiation and tissue formation. To address these problems, a colloidosome microsphere system that is composed of a gelatin hydrogel core and a porous nanoparticle shell is developed. The colloidosome microsphere functions as an ECM and morphogen carrier for the induction of cartilage formation of high-density human mesenchymal stem cell (hMSC) in 3D cultures. With the protection of the nanoparticle shell, the colloidosome microspheres can be readily suspended in aqueous solution without clumping, thus incorporated homogeneously within high-density cell condensations. The gelatin-based colloidosome microspheres stimulate chondrogenesis of hMSCs and degrade rapidly to facilitate ECM remodeling for new tissue formation. When loaded with human transforming growth factor-β1, a potent chondrogenic morphogen, the colloidosomes serve as a bioactive factor delivery vehicle as well. The dual functionality of the colloidosomes as an ECM and a growth factor carrier effectively supports the chondrogenic differentiation of high-density hMSC condensations. These capabilities render the colloidosomes a promising platform system amenable to large-scale production of high-density 3D tissue culture constructs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315228PMC
http://dx.doi.org/10.1002/adtp.202000156DOI Listing

Publication Analysis

Top Keywords

bioactive factor
8
factor delivery
8
delivery vehicle
8
high-density cell
8
tissue formation
8
colloidosome microsphere
8
nanoparticle shell
8
colloidosome microspheres
8
high-density
5
bi-functional nanoparticle-stabilized
4

Similar Publications

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

Scopoletin alleviates acetaminophen-induced hepatotoxicity through modulation of NLRP3 inflammasome activation and Nrf2/HMGB1/TLR4/NF-κB signaling pathway.

Int Immunopharmacol

January 2025

Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China. Electronic address:

Scopoleitin (SP), a bioactive compound from many edible plants and fruits, exerts a wide range of biological activities, however the role and mechanism of SP in acetaminophen (APAP)-induced hepatotoxicity remains unclear. In this study, we verified the protective effect of SP on APAP-induced liver injury (AILI) hepatotoxicity and explore the underlying molecular mechanisms. Here, we showed that SP alleviated AILI by reducing serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, hepatic histopathological damage, inflammation, and liver cell apoptosis.

View Article and Find Full Text PDF

Inflammatory bone resorption represents a pathological condition marked by an increase in bone loss, commonly associated with chronic inflammatory conditions such as rheumatoid arthritis and periodontitis. Current therapies primarily focus on anti-inflammatory drugs and bisphosphonates; however, these treatments are limited due to side effects, inadequate efficacy, and unpredictable long-term complications. Kurarinone (KR), a bioactive compound isolated from the traditional Chinese herb Sophora flavescens, exhibits a range of biological activities, including anti-inflammatory, anticancer, and cardiovascular protective effects.

View Article and Find Full Text PDF

Milk-derived bioactive peptides in insulin resistance and type 2 diabetes.

J Nutr Biochem

January 2025

Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA. Electronic address:

Diabetes is a global health issue affecting over 6% of the world and 11 % of the US population. It is closely linked to insulin resistance, a pivotal factor in Type 2 diabetes development. This review explores a promising avenue for addressing insulin resistance through the lens of Milk-Derived Bioactive Peptides (MBAPs).

View Article and Find Full Text PDF

The healing of bacteria-infected wounds has long posed a significant clinical challenge. Traditional hydrogel wound dressings often lack self-healing properties and effective antibacterial characteristics, making wound healing difficult. In this study, a bioactive small molecule cross-linking agent 4-FPBA/Lys/4-FPBA (FLF) composed of 4-formylphenylboronic acid (4-FPBA) and lysine (Lys) was utilized to cross-link guar gum (GG) and a tannic acid/iron (TA/Fe) chelate through multiple dynamic bonds, leading to the formation of a novel self-healing hydrogel dressing GG-FLF/TA/Fe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!