Background: Diabetes mellitus (DM) is marked by oxidative stress, inflammation, and vascular dysfunction that caused diabetic nephropathy that resulted in end-stage renal disease (ESRD). Vascular dysfunction is characterized by an imbalance in vasoconstrictor and vasodilator agents which underlies the mechanism of vascular injury in DM. Additionally, diminished podocytes correlate with the severity of kidney injury. Podocyturia often precedes proteinuria in several kidney diseases, including diabetic kidney disease. (CeA) is known as an anti-inflammatory and antioxidant and has neuroprotective effects. This research aimed to investigate the potential effect of CeA to inhibit glomerular injury and vascular remodeling in DM.
Methods: The DM rat model was induced through intraperitoneal injection of streptozotocin 60 mg/kg body weight (BW), and then rats were divided into 1-month DM (DM1, = 5), 2-month DM (DM2, = 5), early DM concurrent with CeA treatment for 2 months (DMC2, = 5), and 1-month DM treated with CeA for 1-month (DM1C1, = 5). The CeA (400 mg/kg BW) was given daily via oral gavage. The control group (Control, = 5) was maintained for 2 months. Finally, rats were euthanized and kidneys were harvested to assess vascular remodeling using Sirius Red staining and the mRNA expression of superoxide dismutase, podocytes marker, ACE2, eNOS, and ppET-1 using RT-PCR.
Results: The DM groups demonstrated significant elevation of glucose level, glomerulosclerosis, and proteinuria. A significant reduction of SOD1 and SOD3 promotes the downregulation of nephrin and upregulation of TRPC6 mRNA expressions in rat glomerular kidney. Besides, this condition enhanced ppET-1 and inhibited eNOS and ACE2 mRNA expressions that lead to the development of vascular remodeling marked by an increase of wall thickness, and lumen wall area ratio (LWAR). Treatment of CeA, especially the DMC2 group, attenuated glomerular injury and showed the reversal of induced conditions.
Conclusions: treatment at the early stage of diabetes mellitus ameliorates glomerulosclerosis and vascular injury via increasing antioxidant enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277496 | PMC |
http://dx.doi.org/10.1155/2021/6671130 | DOI Listing |
Clin Kidney J
January 2025
Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
The mineralocorticoid receptor (MR) is a nuclear transcription factor that plays a critical role in regulating fluid, electrolytes, blood pressure, and hemodynamic stability. In conditions such as chronic kidney disease (CKD) and heart failure (HF), MR overactivation leads to increased salt and water retention, inflammatory and fibrotic gene expression, and organ injury. The MR is essential for transcriptional regulation and is implicated in metabolic, proinflammatory, and pro-fibrotic pathways.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
The People's Hospital of Gaozhou, Gaozhou 525200, China.
Cyclin D3 (CCND3), a member of the cyclin D family, is known to promote cell cycle transition. In this study, we found that CCND3 was downregulated in cisplatin-resistant (-diamminedichloroplatinum, DDP) lung adenocarcinoma (LUAD) cells. The loss of CCND3 indeed impeded cell cycle transition.
View Article and Find Full Text PDFJTCVS Open
December 2024
Department of Cardiovascular Surgery, Jefferson Health, Philadelphia, Pa.
Objective: To compare outcomes of aortic valve replacement (AVR) in patients with pure aortic stenosis (Pure AS) and those with pure aortic regurgitation (Pure AR) or mixed AS and AR (MAVD) in the COMMENCE trial.
Methods: Of 689 patients who underwent AVR in the COMMENCE trial, patients with moderate or severe AR with or without AS (Pure AR + MAVD; n = 135) or Pure AS (n = 323) were included. Inverse probability of treatment weighting Kaplan-Meier survival curves were used for time-to-event endpoints, and longitudinal changes in hemodynamics were evaluated using mixed-effects models.
Sheng Li Xue Bao
December 2024
Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; Institute of Advanced Clinical Medicine, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
Heart failure is characterized by abnormal β-adrenergic receptor (β-AR) activation and mitochondrial dysfunction. In heart failure, overactivation of β-AR mediates key pathological processes in cardiomyocytes, including oxidative stress, calcium overload and metabolic abnormalities, which subsequently lead to inflammation, myocardial apoptosis and necrosis. Mitochondria are the core organelles for energy metabolism, and also play a vital role in calcium homeostasis, redox balance and signaling transduction.
View Article and Find Full Text PDFNat Cardiovasc Res
January 2025
Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
Atherosclerotic lesions develop preferentially in arterial regions exposed to disturbed blood flow, where endothelial cells acquire an inflammatory phenotype. How disturbed flow induces endothelial cell inflammation is incompletely understood. Here we show that histone H3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!