The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. This is particularly true for pathogens with low per-site mutation rates, such as DNA viruses, that do not exhibit a large amount of evolutionary change among genetic sequences sampled at different time points. However, whole-genome sequencing can reveal the accumulation of novel genetic variation between samples, promising to render most, if not all, microbial pathogens measurably evolving and suitable for analytical techniques derived from population genetic theory. Here, we aim to assess the measurability of evolution on epidemiological time scales of the Ostreid herpesvirus 1 (OsHV-1), a double stranded DNA virus of which a new variant, OsHV-1 μVar, emerged in France in 2008, spreading across Europe and causing dramatic economic and ecological damage. We performed phylogenetic analyses of heterochronous ( = 21) OsHV-1 genomes sampled worldwide. Results show sufficient temporal signal in the viral sequences to proceed with phylogenetic molecular clock analyses and they indicate that the genetic diversity seen in these OsHV-1 isolates has arisen within the past three decades. OsHV-1 samples from France and New Zealand did not cluster together suggesting a spatial structuration of the viral populations. The genome-wide study of simple and complex polymorphisms shows that specific genomic regions are deleted in several isolates or accumulate a high number of substitutions. These contrasting and non-random patterns of polymorphism suggest that some genomic regions are affected by strong selective pressures. Interestingly, we also found variant genotypes within all infected individuals. Altogether, these results provide baseline evidence that whole genome sequencing could be used to study population dynamic processes of OsHV-1, and more broadly herpesviruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313985 | PMC |
http://dx.doi.org/10.3389/fmicb.2021.711377 | DOI Listing |
Pathogens
October 2024
Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea.
Virus Evol
October 2024
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Rd, Qingdao 266071, China.
Ostreid herpesvirus 1 (OsHV-1), a member of the family (order ), is a major pathogen of bivalves. However, the molecular details of the malacoherpesvirus infection cycle and its overall similarity to the replication of mammalian herpesviruses (family ) remain obscure. Here, to gain insights into the OsHV-1 biology, we performed long-read sequencing of infected blood clams, , which yielded over one million OsHV-1 long reads.
View Article and Find Full Text PDFEnviron Monit Assess
November 2024
Department of Microbiology and Parasitology (MIP), Federal Fluminense University (UFF), Rio de Janeiro, Niterói, Brazil.
Animals (Basel)
October 2024
Environment Branch, Hornsby Shire Council, Hornsby, NSW 2077, Australia.
Warm water temperature is a risk factor for recurrent mass mortality in farmed Pacific oysters caused by , but there is little information on environmental conditions when the disease first appears in a region-the index case. Environmental conditions between four index cases in Australia (2010, 2013, 2016 and 2024) were compared to provide insight into possible origins of the virus. Each index case was preceded by unusually low rainfall and higher rates of temperature change that could increase oyster susceptibility through thermal flux stress.
View Article and Find Full Text PDFBiology (Basel)
September 2024
Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!