Background: Ubiquitin-specific protease 15 (USP15) is an important member of the ubiquitin-specific protease family, the largest deubiquitinase subfamily, whose expression is dysregulated in many types of cancer. However, the biological function and the underlying mechanisms of USP15 in gastric cancer (GC) progression have not been elucidated.

Aim: To explore the biological role and underlying mechanisms of USP15 in GC progression.

Methods: Bioinformatics databases and western blot analysis were utilized to determine the expression of USP15 in GC. Immunohistochemistry was performed to evaluate the correlation between USP15 expression and clinicopathological characteristics of patients with GC. A loss- and gain-of-function experiment was used to investigate the biological effects of USP15 on GC carcinogenesis. RNA sequencing, immunofluorescence, and western blotting were performed to explore the potential mechanism by which USP15 exerts its oncogenic functions.

Results: USP15 was up-regulated in GC tissue and cell lines. The expression level of USP15 was positively correlated with clinical characteristics (tumor size, depth of invasion, lymph node involvement, tumor-node-metastasis stage, perineural invasion, and vascular invasion), and was related to poor prognosis. USP15 knockdown significantly inhibited cell proliferation, invasion and epithelial-mesenchymal transition (EMT) of GC , while overexpression of USP15 promoted these processes. Knockdown of USP15 inhibited tumor growth . Mechanistically, RNA sequencing analysis showed that USP15 regulated the Wnt signaling pathway in GC. Western blotting confirmed that USP15 silencing led to significant down-regulation of β-catenin and Wnt/β-catenin downstream genes (c-myc and cyclin D1), while overexpression of USP15 yielded an opposite result and USP15 mutation had no change. Immunofluorescence indicated that USP15 promoted nuclear translocation of β-catenin, suggesting activation of the Wnt/β-catenin signaling pathway, which may be the critical mechanism promoting GC progression. Finally, rescue experiments showed that the effect of USP15 on gastric cancer progression was dependent on Wnt/β-catenin pathway.

Conclusion: USP15 promotes cell proliferation, invasion and EMT progression of GC regulating the Wnt/β-catenin pathway, which suggests that USP15 is a novel potential therapeutic target for GC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8311539PMC
http://dx.doi.org/10.3748/wjg.v27.i26.4221DOI Listing

Publication Analysis

Top Keywords

usp15
20
ubiquitin-specific protease
12
gastric cancer
12
cancer progression
12
signaling pathway
12
progression regulating
8
regulating wnt/β-catenin
8
wnt/β-catenin signaling
8
underlying mechanisms
8
mechanisms usp15
8

Similar Publications

Hepatocellular carcinoma (HCC) is among the most malignant tumors and seriously threatens human health worldwide, and its incidence rate is increasing annually. USP15 is a member of the ubiquitination-specific protease (USP) family, which can regulate protein ubiquitination, thereby affecting their stability, and is dysregulated in many cancers, but its expression and regulatory mechanism in HCC are unclear. The aims of this study were to explore the role and mechanism of USP15 in regulating HCC cell stemness, proliferation, and lenvatinib resistance.

View Article and Find Full Text PDF

The disease burden of renal cell carcinoma (RCC) has decreased in recent years with advances in treatment, but its pathogeny still remains elusive. We aim to study the role of HOXA3/USP15/SQSTM1 axis on autophagy and M2-type macrophage polarization in RCC. In this study, cell apoptosis and proliferation were assessed by flow cytometry and CCK-8.

View Article and Find Full Text PDF
Article Synopsis
  • TIFAB (TRAF-interacting protein with forkhead-associated domain B) is an inhibitor of NF-kB signaling that plays significant roles in blood cell production and various blood cancers, including acute myeloid leukemia (AML).
  • The study finds that deleting TIFAB in AML negatively affects leukemia stem/progenitor cell function, glucose consumption, and mitochondrial activity, while gene analysis shows reduced activity in key pathways such as MYC and glycolysis.
  • HNF4A emerges as a crucial target of TIFAB, and restoring HNF4A levels can counteract the metabolic issues linked to TIFAB deficiency, emphasizing the importance of the TIFAB-HNF4A relationship in AML progression.
View Article and Find Full Text PDF

Ectopic USP15 expression inhibits HIV-1 transcription involving changes in YY1 deubiquitination and stability.

Front Cell Infect Microbiol

December 2024

Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States.

Introduction: Protein homeostasis is maintained by the opposing action of ubiquitin ligase and deubiquitinase, two important components of the ubiquitin-proteasome pathway, and contributes to both normal physiological and pathophysiological processes. The current study aims to delineate the roles of ubiquitin-specific protease 15 (USP15), a member of the largest deubiquitinase family, in HIV-1 gene expression and replication.

Methods: We took advantage of highly selective and specific ubiquitin variants (UbV), which were recently designed and developed for USP15, and ascertained the inhibitory effects of USP15 on HIV-1 gene expression and production by transfection and Western blotting.

View Article and Find Full Text PDF

Background: Radiation-induced intestinal injury (RIII) interrupts the scheduled processes of abdominal and pelvic radiotherapy (RT) and compromises the quality of life of cancer survivors. However, the specific regulators and mechanisms underlying the effects of RIII remain unknown. The biological effects of RT are caused primarily by DNA damage, and ataxia telangiectasia mutated (ATM) is a core protein of the DNA damage response (DDR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!