G protein-coupled receptors (GPCRs) are important pharmaceutical targets for the treatment of a broad spectrum of diseases. Although there are structures of GPCRs in their active conformation with bound ligands and G proteins, the detailed molecular interplay between the receptors and their signaling partners remains challenging to decipher. To address this, we developed a high-sensitivity, high-throughput matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method to interrogate the first stage of signal transduction. GPCR-G protein complex formation is detected as a proxy for the effect of ligands on GPCR conformation and on coupling selectivity. Over 70 ligand-GPCR-partner protein combinations were studied using as little as 1.25 pmol protein per sample. We determined the selectivity profile and binding affinities of three GPCRs (rhodopsin, beta-1 adrenergic receptor [β1AR], and angiotensin II type 1 receptor) to engineered Gα-proteins (mGs, mGo, mGi, and mGq) and nanobody 80 (Nb80). We found that GPCRs in the absence of ligand can bind mGo, and that the role of the G protein C terminus in GPCR recognition is receptor-specific. We exemplified our quantification method using β1AR and demonstrated the allosteric effect of Nb80 binding in assisting displacement of nadolol to isoprenaline. We also quantified complex formation with wild-type heterotrimeric Gαβγ and β-arrestin-1 and showed that carvedilol induces an increase in coupling of β-arrestin-1 and Gαβγ to β1AR. A normalization strategy allows us to quantitatively measure the binding affinities of GPCRs to partner proteins. We anticipate that this methodology will find broad use in screening and characterization of GPCR-targeting drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346855 | PMC |
http://dx.doi.org/10.1073/pnas.2024146118 | DOI Listing |
Chemistry
December 2024
University of Münster Department of Chemistry and Pharmacy: Westfalische Wilhelms-Universitat Munster Fachbereich 12 Chemie und Pharmazie, Institut für Anorganische und Analytische Chemie, Corrensstr. 28/30, 48149, Münster, GERMANY.
Two artificial imidazole-derived nucleobases, HQIm (3H-imidazo[4,5-f]quinolin-5-ol) and CaIm (imidazole-4-carboxylate), were introduced into short DNA duplexes to systematically investigate their thermal stability upon metal ion coordination. Metal-mediated base pairs are formed with the 3d metal ions CoII, NiII and ZnII, as well as with the lanthanoid ions EuIII and SmIII, which induce a thermal stabilization of up to 8 °C upon binding. The latter are the first lanthanoid-mediated base pairs involving only four donor atoms that result in a significant duplex stabilization.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China.
Boosting the stability of cesium/formamidinium (Cs/FA) based perovskite solar cells (PSCs) has received tremendous attention. However, the crystallization of perovskites usually undergoes complex intermediate phase transitions and ion loss processes, which seriously degrade the efficiency and stability of PSCs. Herein, iodine monobromide (IBr, an interhalogen) is incorporated into the precursor solution to regulate the perovskite crystallization process.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Hangzhou Normal University, College of Material, Chemistry and Chemical Engineering, 2318 Yuhangtang Road, 311121, Hangzhou, CHINA.
In industry, the two important nitrile starting materials, adiponitrile and 2-methylglutaronitrile, are primarily manufactured through the well-known DuPont process, which consists of a tandem sequence including first hydrocyanation, isomerization and second hydrocyanation. However, this mature process has the intrinsic defects of step efficiency and regioselectivity. Herein, we report a nickel-catalyzed divergent, one-step double hydrocyanation of 1,3-butadiene to produce either adiponitrile or 2-methylglutaronitrile in high regioselectivity.
View Article and Find Full Text PDFDalton Trans
December 2024
Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan.
This study investigates the mechanism of prototropic tautomerization in metal-bound asymmetric pyrazole (R-PzH) ligands during Cu(II)-mediated PzH-MeCN coupling reactions. Intrinsic prototropic tautomerization of metal-bound ligands has not been previously documented. Various new bis-pyrazolylamidino Cu(II) complexes, [Cu(R-Pz(HNC(Me)))(ClO)], from the coupling reaction, and tetrakis pyrazole Cu(II) complexes, [Cu(R-PzH)(ClO)], with symmetric and asymmetric -monosubstituted R-PzH ligands were synthesized and characterized.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Shandong University, Chemistry and Chemical Engineering, Shanda South Road 27, 250100, Jinan, CHINA.
Catalytic transformation of carbene species constitutes a fundamental part in organic synthesis, and the research in this direction has been dominated by transition metals while organic catalysts are difficult to mimic such transition-metal-like reactivity. It would significantly advance carbene chemistry if organic catalysts enable achieving classical metal-carbene approaches otherwise unrealizable reactions. Herein, we report that chalcogen bonding catalysis can solve reactivity problem to achieve an elusive Buchner ring expansion of aryl ketones appending a cyclopropene moiety as carbene precursor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!