Proline residues are unique in the extent to which they constrain the conformational space available to the protein backbone. Because the conformational preferences of proline cannot be recapitulated by any of the other proteinogenic amino acids, standard mutagenesis approaches that seek to introduce new chemical functionality at proline positions unavoidably perturb backbone flexibility. Here, we detail the incorporation of proline analogs into recombinant proteins in Escherichia coli via a residue-specific mutagenesis strategy. This approach results in global replacement of proline residues with high yields of the recombinant protein of interest, minimal genetic manipulation, and maintenance of backbone conformational constraints.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009304 | PMC |
http://dx.doi.org/10.1016/bs.mie.2021.05.008 | DOI Listing |
J Inorg Biochem
March 2025
Faculty of Chemistry (UPV/EHU), Manuel Lardizabal 3, Donostia-San Sebastian 20018, Spain; DIPC, Manuel Lardizabal 4, Donostia-San Sebastian 20018, Spain. Electronic address:
Mimosine, a non-essential amino acid derived from plants, has a strong affinity for binding divalent and trivalent metal cations, including Zn, Ni, Fe, and Al. This ability endows mimosine with significant antimicrobial and anti-cancer properties, making it a promising candidate for therapeutic applications. Previous research has demonstrated the effectiveness of mimosine-containing peptides as metal chelators, offering a safer alternative to conventional chelation agents.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Department of Pomology, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt; Biology Research & Studies Institute, Assiut University, Assiut, 71526, Egypt. Electronic address:
Smart nanohybrid technology with potential advantages to plants has recently been developed formanaging the widespread pollution of heavy metals. Herein, we disclose a novel strategy to combat Pb stress in strawberry (Fragaria spp. cv.
View Article and Find Full Text PDFBiopolymers
January 2025
Department of Chemistry, Faculty of Engineering and Science, Bursa Technical University, Bursa, Turkey.
Cellulose is one of the most abundant biopolymers in nature. Despite being the subject of research in various fields, it is not as famous as chitosan in catalyst design. Herein, a novel thiourea-functionalized cellulose (CTU-6) was synthesized as a robust hydrogen bonding catalyst with the degree of substitution (DS) of 0.
View Article and Find Full Text PDFChemistry
December 2024
Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090, Montpellier, France.
Carbohydr Polym
February 2025
School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
Antifreeze proteins (AFPs) are a type of protein capable of inhibiting ice crystal growth, lowering the freezing point, and protecting organisms from cold-induced damage. In this study, cellulose nanocrystals (CNCs) are chemically modified to enhance the hydrogel's performance. The synergistic effect with AFPs further regulates its mechanical properties, antifreeze performance, and high sensing sensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!