Enzymatic thioamidation of peptide backbones.

Methods Enzymol

Department of Chemistry, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India. Electronic address:

Published: August 2021

Thioamides are found in a few natural products and two known protein assemblies: the Escherichia coli ribosome and methyl-coenzyme M reductase (MCR) from methane-metabolizing archaea. Compared to an amide, thioamides alter the physical and chemical properties of peptide backbones, including the conformation dynamics, proteolytic stability, hydrogen-bonding capabilities, and possibly reactivity of a protein when installed. Recently, there has been significant progress in elucidating enzymatic post-translational thioamide installation, with most work leveraging the archaeal MCR-modifying enzymes. This chapter describes the protocols used for the in vitro enzymatic thioamidation of MCR-derived peptides, including polypeptide overexpression, purification, reaction reconstitution, and mass spectrometry-based product analysis. In addition, we highlight the protocols used for the biochemical, kinetics, and binding studies using recombinant enzymes obtained heterologously from E. coli. We anticipate that these methods will serve to guide future studies on peptide post-translational thioamidation, as well as other peptide backbone modifications using a parallel workflow.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328229PMC
http://dx.doi.org/10.1016/bs.mie.2021.04.010DOI Listing

Publication Analysis

Top Keywords

enzymatic thioamidation
8
peptide backbones
8
peptide
4
thioamidation peptide
4
backbones thioamides
4
thioamides natural
4
natural products
4
products protein
4
protein assemblies
4
assemblies escherichia
4

Similar Publications

Characterization of Histidine Functionalization and Its Timing in the Biosynthesis of Ribosomally Synthesized and Posttranslationally Modified Thioamitides.

J Am Chem Soc

March 2022

State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

Thioamitides are ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products that hold great potential in anticancer drug development. Members in this RiPP family feature a thioamidated peptidyl chain conjugated with a macrocyclic ring system that contains two nonproteinogenic residues, 2-minonyl-teine (AviCys) and β-ydroxy--iethyl-l-tidine (hdmHis). Focusing on the hdmHis residue that is unique to thioamitides, we report the enzymatic process for His functionalization and, more importantly, the timing of its related reactions with the other posttranslational modifications (PTMs) involved in thioamitide biosynthesis.

View Article and Find Full Text PDF

Enzymatic thioamidation of peptide backbones.

Methods Enzymol

August 2021

Department of Chemistry, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India. Electronic address:

Thioamides are found in a few natural products and two known protein assemblies: the Escherichia coli ribosome and methyl-coenzyme M reductase (MCR) from methane-metabolizing archaea. Compared to an amide, thioamides alter the physical and chemical properties of peptide backbones, including the conformation dynamics, proteolytic stability, hydrogen-bonding capabilities, and possibly reactivity of a protein when installed. Recently, there has been significant progress in elucidating enzymatic post-translational thioamide installation, with most work leveraging the archaeal MCR-modifying enzymes.

View Article and Find Full Text PDF

6-Thioguanine (6TG) is a DNA-targeting therapeutic used in the treatment of various cancers. While 6TG was rationally designed as a proof of concept for antimetabolite therapy, it is also a rare thioamide-bearing bacterial natural product and critical virulence factor of Erwinia amylovorans, plant pathogens that cause fire blight. Through gene expression, biochemical assays, and mutational analyses, we identified a specialized bipartite enzyme system, consisting of an ATP-dependent sulfur transferase (YcfA) and a sulfur-mobilizing enzyme (YcfC), that is responsible for the peculiar oxygen-by-sulfur substitution found in the biosynthesis of 6TG.

View Article and Find Full Text PDF

Methyl-coenzyme M reductase (MCR) is an essential enzyme found strictly in methanogenic and methanotrophic archaea. MCR catalyzes a reversible reaction involved in the production and consumption of the potent greenhouse gas methane. The α-subunit of this enzyme (McrA) contains several unusual posttranslational modifications, including the only known naturally occurring example of protein thioamidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!