Multiexcitons generation is a process of generating electron-hole pairs in nanostructured semiconductors by absorbing a single high-energy photon. The multiexciton process is essential for the performance of optoelectronic devices based on perovskite nanomaterials. In this paper, ultrafast time-resolved transient absorption spectroscopy is used to study the ultrafast dynamics of CsPbBrnanocrystals. It is found that the multiexcitons Auger recombination lifetime increases with the decrease of pump fluence, while it is on the contrary for the hot carrier cooling time. The increase in the number of photons absorbed by each nanocrystal under high pump fluence slows down the relaxation of hot carriers to the band edge. The hot carrier cooling lifetime increases from 0.25 to 0.85 ps when the pump fluence increases from 6 to 127J cm. Temperature-dependent transient absorption spectroscopy exhibits that the relaxation process of hot carriers slows down sharply when the lattice temperature decreases from 280 to 80 K. Moreover, the exciton binding energy 46 meV of CsPbBrnanocrystals is obtained by temperature-dependent steady-state photoluminescence spectroscopy. These findings provide insights for applications such as solar cells and light-emitting devices based on CsPbBrnanocrystals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac18d7 | DOI Listing |
Nanophotonics
November 2024
College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.
Ultrafast all-optical control has been a subject of wide-spread attention as a method of manipulating optical fields using light excitation on extremely short time scales. As a fundamental form of ultrafast all-optical control, all-optical switching has achieved sub-picosecond switch speeds in the visible, infrared, and terahertz spectral regions. However, due to the lack of suitable materials, ultrafast all-optical control in the ultraviolet range remains in its early stages.
View Article and Find Full Text PDFAdv Mater
December 2024
Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China.
Bulk photovoltaic effect (BPVE) can break the Shockley-Queisser limit by leveraging the inherent asymmetry of crystal lattice without a junction. However, this effect is mainly confined to UV-vis spectrum due to the wide-bandgap nature of traditional ferroelectric materials, thereby limiting the exploration of the infrared light-driven efficient BPVE. Herein, giant two-photon absorption (TPA) driven BPVE is uncovered from visible to infrared in ferroelectric α-InSe utilizing wavelength-tunable terahertz (THz) emission spectroscopy.
View Article and Find Full Text PDFNanophotonics
April 2024
FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00 Prague 8, Czech Republic.
Time-resolved terahertz spectroscopy is used to investigate formation and ultrafast long-distance propagation of electron-hole plasma in strongly photoexcited GaAs and InP. The observed phenomena involve fundamental interactions of electron-hole system with light, which manifest themselves in two different regimes: a coherent one with the plasma propagation speeds up to /10 (in GaAs at 20 K) and an incoherent one reaching up to /25 (in InP at 20 K), both over a macroscopic distance >100 μm. We explore a broad range of experimental conditions by investigating the two materials, by tuning their band gap with temperature and by controlling the interaction strength with the optical pump fluence.
View Article and Find Full Text PDFACS Photonics
November 2024
Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Université Lyon, 69130 Ecully, France.
We report the first application of broadband time-resolved pump-probe ellipsometry to study the ultrafast dynamics of the photoinduced insulator-to-metal transition (IMT) in vanadium dioxide (VO) thin films driven by 35 fs laser pulses. This novel technique enables the direct measurement of the time-resolved evolution of the complex pseudodielectric function of VO during the IMT. We have identified distinct thermal and nonthermal dynamics in the photoinduced IMT, which critically depends on the pump wavelength and fluence, while providing a detailed temporal and spectral phase map.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!