Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microcystin-LR (MC-LR) is a cyanobacterial toxin produced as a result of eutrophication in polluted water in warm weather conditions. The MC-LR could cause health problems in mammal organs such as the liver, heart, and muscle. Therefore, the World Health Organization (WHO) has stipulated a limit of <1.0 ng/mL in drinking water. Thus, detection and quantification are vital, but current techniques require complex and expensive offsite analysis. We have developed an inexpensive, sensitive, and field-deployable sensor based on bioactivated multiwalled carbon nanotubes (MWCNTs, diameter 20 nm) and micropore filter paper (0.45-μm pore size) for the detection of MC-LR. A specially designed DNA oligonucleotide (5-NH-C-AN) was used as the MC-LR targeting aptamer (MCTA). For bioactivation, MCTA was immobilized on the carboxylated MWCNTs via the formation of amide bonds. The bioactivated MWCNTs were deposited on the micropore filter paper by suction filtering. The detection of MC-LR in freshwater was possible within 1.5 h, achieved by measuring the changes in electrical resistance caused by the selective MC-LR and MCTA interactions. Despite suffering from some matrix effects, the detection limit of the sensor was 0.19 ng/mL for low-concentration MC-LR (≤0.5 ng/mL). This method is much cheaper (biosensor price: < $2.5) than liquid chromatography coupled with tandem mass spectroscopy analysis (ca. $50/sample) which is a standard method for MC-LR detection in a modern laboratory. Thus, this cheap and straightforward MC-LR sensor has applications for detection in remote locations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2021.113529 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!