A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Selective and easy detection of microcystin-LR in freshwater using a bioactivated sensor based on multiwalled carbon nanotubes on filter paper. | LitMetric

Microcystin-LR (MC-LR) is a cyanobacterial toxin produced as a result of eutrophication in polluted water in warm weather conditions. The MC-LR could cause health problems in mammal organs such as the liver, heart, and muscle. Therefore, the World Health Organization (WHO) has stipulated a limit of <1.0 ng/mL in drinking water. Thus, detection and quantification are vital, but current techniques require complex and expensive offsite analysis. We have developed an inexpensive, sensitive, and field-deployable sensor based on bioactivated multiwalled carbon nanotubes (MWCNTs, diameter 20 nm) and micropore filter paper (0.45-μm pore size) for the detection of MC-LR. A specially designed DNA oligonucleotide (5-NH-C-AN) was used as the MC-LR targeting aptamer (MCTA). For bioactivation, MCTA was immobilized on the carboxylated MWCNTs via the formation of amide bonds. The bioactivated MWCNTs were deposited on the micropore filter paper by suction filtering. The detection of MC-LR in freshwater was possible within 1.5 h, achieved by measuring the changes in electrical resistance caused by the selective MC-LR and MCTA interactions. Despite suffering from some matrix effects, the detection limit of the sensor was 0.19 ng/mL for low-concentration MC-LR (≤0.5 ng/mL). This method is much cheaper (biosensor price: < $2.5) than liquid chromatography coupled with tandem mass spectroscopy analysis (ca. $50/sample) which is a standard method for MC-LR detection in a modern laboratory. Thus, this cheap and straightforward MC-LR sensor has applications for detection in remote locations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2021.113529DOI Listing

Publication Analysis

Top Keywords

selective easy
4
easy detection
4
detection microcystin-lr
4
microcystin-lr freshwater
4
freshwater bioactivated
4
bioactivated sensor
4
sensor based
4
based multiwalled
4
multiwalled carbon
4
carbon nanotubes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!