Mitochondria play an essential role in various biochemical processes that maintain cellular homeostasis. Minor defects in the mitochondrial genome can lead to aversive behavioral responses in an organism. Nevertheless, little is known about the impact of mitochondrial mutations on the metabolome of Caenorhabditis elegans (C. elegans). In this study, an untargeted metabolomics approach was employed to elucidate the metabolic aberrant caused by mitochondrial DNA mutations in C. elegans. Specifically, three mutant strains of C. elegans, including clk-1, mev-1, and phb-2, were adopted to study corresponding metabolic signatures. Adult worms were collected, and metabolites were extracted and analyzed by gas chromatography-mass spectrometry. Uni- and multivariate analyses were performed to elucidate perturbed metabolism between wildtype worms and mutant strains, and metabolic differences among the mutants. The tricarboxylic acid cycle intermediates, amino acids, and sugars were significantly affected in the mitochondrial mutants. Overall, each mitochondrial DNA mutation exhibited a different pattern of metabolic alterations. The shift of metabolome appeared to be associated with the lifespan of C. elegans. In particular, clk-1 and mev-1 strains, which had the opposite phenotypes of lifespan, had apparently different metabolomes. Our findings set light on the metabolic consequences of mitochondrial genetic variants, which may help better understand mitochondrial disease mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2021.122863 | DOI Listing |
Mol Biol Rep
January 2025
Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India.
MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections.
View Article and Find Full Text PDFThe kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Türkiye.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Microbiology and Pathogenic Biology, Air Force Military Medical University, Xi'an 710032, China. *Corresponding authors, E-mail:
Objective The prevalence of drug-resistant Mycobacterium tuberculosis (Mtb) strains is exacerbating the global burden of tuberculosis (TB), highlighting the urgent need for new treatment strategies for TB. Methods The recombinant adenovirus vaccine expressing cyclic di-adenosine monophosphate (c-di-AMP) phosphodiesterase B (CnpB) (rAd-CnpB), was administered to normal mice via mucosal immunization, either alone or in combination with drug therapy, to treat Mtb respiratory infections in mice.Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of antibodies in serum and bronchoalveolar lavage fluid (BALF).
View Article and Find Full Text PDFBiosci Biotechnol Biochem
January 2025
Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea.
Obesity, often driven by high-fat diets (HFD), is a major global health issue, necessitating effective preventive measures. Tetragonia tetragonoides, a plant with known medicinal properties, has not been extensively studied for its effects on HFD-induced obesity and related genetic changes in mice. This study explores the impact of Tetragonia tetragonoides extract (TTE; 300 mg/kg) on obesity-related traits in C57BL/6J male mice, with a focus on transcriptomic changes in the liver and white adipose tissue (WAT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!