The toxicity impacts of herbicides on crop, animals, and human are big problems global wide. The rapid and non-invasive ways for assessing herbicide-responsible effects on crop growth regarding types and levels still remain unexplored. In this study, visible/near infrared hyperspectral imaging (Vis/NIR HSI) coupled with SCNN was used to reveal the different characteristics in the spectral reflectance of 2 varieties of wheat seedling leaves that were subjected to 4 stress levels of 3 herbicide types during 4 stress durations and make early herbicide stress prediction. The first-order derivative results showed the spectral reflectance exhibited obvious differences at 518-531 nm, 637-675 nm and the red-edge. A SCNN model with attention mechanism (SCNN-ATT) was proposed for herbicide type and level classification of different stress durations. Further, a SCNN-based feature selection model (SCNN-FS) was proposed to screen out the characteristic wavelengths. The proposed methods achieved 96% accuracy of herbicide type classification and around 80% accuracy of stress level classification for both wheat varieties after 48 h. Overall, this study illustrated the potential of using Vis/NIR HSI to rapidly distinguish different herbicide types and serial levels in wheat at an early stage, which held great value for developing on-line herbicide stress recognizing methods in the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.126706 | DOI Listing |
Plants (Basel)
January 2025
Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, Maringa 87020-900, PR, Brazil.
The cover crop (L.) R.Br.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2025
Laboratório Integrado de Biociências Translacionais - Instituto de Biodiversidade e Sustentabilidade - NUPEM - Universidade Federal do Rio de Janeiro - UFRJ, Macaé, RJ, Brazil; Pós-Graduação em Produtos Bioativos e Biociências - Universidade Federal do Rio de Janeiro - UFRJ, Macaé, RJ, Brazil; Pós-Graduação Multicêntrico em Ciências Fisiológicas - Instituto de Biodiversidade e Sustentabilidade - NUPEM - Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil; Pós-Graduação em Biociências e Biotecnologia - Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF - Campos dos Goytacazes, Rio de Janeiro, RJ, Brazil. Electronic address:
Paraquat (PQ) is a widely used herbicide; however, it has been linked to various diseases, including an increased risk of developing Parkinsonism. To study this, invertebrates such as ascidians have been used. They have a simple nervous system and are considered an emerging model for the study of neurodegenerative diseases.
View Article and Find Full Text PDFEnviron Toxicol
January 2025
Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
Roundup is one of the most widely used glyphosate-based harmful herbicides in the United States as well as globally, which poses a severe risk for terrestrial and aquatic organisms. In order to identify the detrimental effects of Roundup exposure in aquatic organisms, we investigated the environmentally relevant concentrations of Roundup exposure (low dose: 0.5 μg/L and high dose: 5.
View Article and Find Full Text PDFAgricultural pollutants co-interact and affect the vital functions, stress tolerance, resistance, immunity, and survival of insect pests. These metal-herbicide interactions have inevitable but remarkable effects on insects, which remain poorly understood. Here, we examined the effects of the interactions among zinc (Zn), iron (Fe), and paraquat (PQ) at a sublethal dose on the physiological response of the Egyptian cotton leafworm .
View Article and Find Full Text PDFTissue Cell
January 2025
Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
Bromoxynil (BML) is a toxic herbicide that is reported to cause various organ toxicities. However, there is not a single investigation conducted to elucidate the adverse impacts of BML on hepatic tissues at different dose concentrations. Therefore, the current investigation was planned to assess the deleterious effects of BML on liver against different dose concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!