Transcranial direct-current stimulation protects against cerebral ischemia-reperfusion injury through regulating Cezanne-dependent signaling.

Exp Neurol

Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao 266071, China. Electronic address:

Published: November 2021

Transcranial direct-current stimulation (tDCS) is proved safe and shows therapeutic effect in cerebral ischemic stroke in clinical trials. But the underlying molecular mechanisms remain unclear. Here we show that tDCS treatment reduces the infarct volume after rat cerebral ischemia-reperfusion (I/R) injury and results in functional improvement of stroke animals. At the cellular and molecular level, tDCS suppresses I/R-induced upregulation of Cezanne in the ischemic neurons. Cezanne inhibition confers neuroprotection after rat I/R and oxygen glucose deprivation (OGD) in the cortical neuronal cultures. Inhibiting Cezanne increases the level of SIRT6 that is downregulated in the ischemic neurons. Suppressing SIRT6 blocks Cezanne inhibition-induced neuroprotective effect and overexpressing SIRT6 attenuates OGD-induced neuronal death. We further show that downregulating Cezanne reduces DNA double-strand break (DSB) through upregulation of SIRT6 in OGD-insulted neurons. Together, this study suggests that Cezanne-dependent SIRT6-DNA DSB signaling pathway may mediate the neuroprotective effect of tDCS in ischemic neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2021.113818DOI Listing

Publication Analysis

Top Keywords

ischemic neurons
12
transcranial direct-current
8
direct-current stimulation
8
cerebral ischemia-reperfusion
8
cezanne
5
stimulation protects
4
protects cerebral
4
ischemia-reperfusion injury
4
injury regulating
4
regulating cezanne-dependent
4

Similar Publications

Traditional Chinese Medicine Borneol-Based Polymeric Micelles Intracerebral Drug Delivery System for Precisely Pathogenesis-Adaptive Treatment of Ischemic Stroke.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.

The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.

View Article and Find Full Text PDF

Left superior cervical ganglia lymph node mimicry and its role in rat ventricular arrhythmias following myocardial infarction.

Acta Physiol (Oxf)

February 2025

Department of Cardiology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.

Aim: Sympathetic overactivation may lead to severe ventricular arrhythmias (VAs) post-myocardial infarction (MI). The superior cervical ganglion (SCG) is an extracardiac sympathetic ganglion which regulates cardiac autonomic tone. We aimed to investigate the characteristics and functional significance of SCG on neuro-cardiac communication post-MI.

View Article and Find Full Text PDF

Diabetic Retinopathy (DR), a leading complication of diabetes mellitus, has long been considered as a microvascular disease of the retina. However, recent evidence suggests that DR is a neurovascular disease, characterized by the degeneration of retinal neural tissue and microvascular abnormalities encompassing ischemia, neovascularization, and blood-retinal barrier breakdown, ultimately leading to blindness. The intricate relationship between the retina and vascular cells constitutes a neurovascular unit, a multi-cellular framework of retinal neurons, glial cells, immune cells, and vascular cells, which facilitates neurovascular coupling, linking neuronal activity to blood flow.

View Article and Find Full Text PDF

Ropivacaine and celecoxib-loaded injectable composite hydrogel for improved chronic pain-exacerbated myocardial ischemia-reperfusion injury.

J Control Release

January 2025

Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. Electronic address:

Chronic pain is a prevalent condition affecting a significant portion of the global population and is known to be associated with an increased risk of cardiovascular diseases. Despite the clinical relevance, the mechanisms underlying the link between chronic pain and myocardial ischemia-reperfusion (MI/R) injury remain poorly understood. This study aimed to investigate the role of the superior cervical ganglion (SCG) in mediating the effects of chronic pain on MI/R injury and to develop a novel therapeutic strategy.

View Article and Find Full Text PDF

Effect of electroacupuncture on vascular remodeling in rats with cerebral ischemia by regulating irisin based on VEGF/Akt/eNOS signaling pathway.

Brain Res Bull

January 2025

School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai, China. Electronic address:

Article Synopsis
  • The study investigated how electroacupuncture (EA) affects irisin secretion and its role in recovering brain function and blood vessel health after a stroke in rats.
  • The research showed that EA increased irisin levels significantly after seven days and improved neurobehavioral function while reducing brain damage and enhancing blood flow and vascular growth.
  • These beneficial effects of EA were weakened when the gene responsible for irisin production was silenced, suggesting that irisin plays a critical role in EA’s therapeutic effects on brain recovery.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!