Electrochemical Synthesis of Glycine from Oxalic Acid and Nitrate.

Angew Chem Int Ed Engl

Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.

Published: September 2021

In manufacturing C-N bond-containing compounds, it is an important challenge to alternate the conventional methodologies that utilize reactive substrates, toxic reagents, and organic solvents. In this study, we developed an electrochemical method to synthesize a C-N bond-containing molecule avoiding the use of cyanides and amines by harnessing nitrate (NO ) as a nitrogen source in an aqueous electrolyte. In addition, we utilized oxalic acid as a carbon source, which can be obtained from electrochemical conversion of CO Thus, our approach can provide a route for the utilization of anthropogenic CO and nitrate wastes, which cause serious environmental problems including global warming and eutrophication. Interestingly, the coreduction of oxalic acid and nitrate generated reactive intermediates, which led to C-N bond formation followed by further reduction to an amino acid, namely, glycine. By carefully controlling this multireduction process with a fabricated Cu-Hg electrode, we demonstrated the efficient production of glycine with a faradaic efficiency (F.E.) of up to 43.1 % at -1.4 V vs. Ag/AgCl (current density≈90 mA cm ).

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202108352DOI Listing

Publication Analysis

Top Keywords

oxalic acid
12
acid nitrate
8
c-n bond-containing
8
electrochemical synthesis
4
synthesis glycine
4
glycine oxalic
4
acid
4
nitrate
4
nitrate manufacturing
4
manufacturing c-n
4

Similar Publications

is one of the fungi that cause plant diseases. It damages plants by secreting large amounts of oxalic acid and cell wall-degrading enzymes. To meet this challenge, we designed a new pH/enzyme dual-responsive nanopesticide Pro@ZnO@Pectin (PZP).

View Article and Find Full Text PDF

Photoinduced Concerted Fragmentation of Alkyl -Phthalimidoyl Oxalates: Mechanisms and Applications.

Org Lett

December 2024

School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.

In this work, we used experiments and density functional theory calculations to investigate the mechanism and driving forces of the reductive fragmentation of NHPI esters. Mechanistic studies suggest that the fragmentation behavior of the NHPI ester is influenced not only by the electronic nature of the substituent group but also by the stability of the radical intermediate. To further investigate this transformation, we next examined the aminoalkoxycarbonylation of alkenes using alkyl -phthalimidoyl oxalates.

View Article and Find Full Text PDF

High intake of dietary linoleic acid may increase the incidence of many diseases. The aim of this research is to examine the impact of linoleic acid on the damage caused by calcium oxalate kidney stones on renal tubular epithelial cells. Calcium oxalate monohydrate (COM) crystals were prepared and used to treat HK-2 cells, which were further treated with different concentrations of linoleic acid in vitro.

View Article and Find Full Text PDF

Herein, choline chloride/oxalic acid (ChCl/OA) and choline chloride/oxalic acid/ethylene glycol (ChCl/OA/EG) pretreatments of oil palm empty fruit bunches (EFB) and mesocarp fibers (MSF) were conducted to achieve protection of the lignin structure, while improving the enzymatic efficiency of the solid residues. Under the operating conditions of 90 °C and 6 h, ChCl/OA/EG demonstrated a higher lignin extraction selectivity and obtained solid residues with higher hemicellulose content compared to ChCl/OA. The digestibility of glucan and xylan in solid residues obtained using ChCl/OA/EG achieved 98.

View Article and Find Full Text PDF

The early stages of kidney crystal formation involve inflammation and hypoxia-induced cell injury; however, the role of the hypoxic response in kidney crystal formation remains unclear. This study investigated the effects of a prolyl hydroxylase domain inhibitor (roxadustat) on renal calcium oxalate (CaOx) crystal formation through in vitro and in vivo approaches. In the in vitro experiment, murine renal tubular cells (RTCs) were exposed to varying roxadustat concentrations and CaOx crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!