Aims: Increased resistin (Retn) levels are associated with development of cardiovascular diseases. However, the role of Retn in heart failure (HF) is still unclear. Here we probed the functional and molecular mechanism underlying the beneficial effect of Retn deletion in HF.
Methods And Results: Wild-type (WT) and adipose tissue-specific Retn-knockout (RKO) mice were subjected to transverse aortic constriction (TAC)-induced HF. Cardiac function and haemodynamic changes were measured by echocardiography and left ventricular catheterization. Adipose tissue Retn deletion attenuated while Retn cardiac-selective overexpression, via a recombinant adeno-associated virus-9 vector, exacerbated TAC-induced hypertrophy, cardiac dysfunction, and myocardial fibrosis in WT and RKO mice. Mechanistically, we showed that Gadd45α was significantly increased in RKO HF mice while cardiac overexpression of Retn led to its downregulation. miR148b-3p directly targets Gadd45α and inhibits its expression. Retn overexpression upregulated miR148b-3p expression and triggered DNA damage response (DDR) in RKO-HF mice. Inhibition of miR148b-3p in vivo normalized Gadd45α expression, decreased DDR, and reversed cardiac dysfunction and fibrosis. In vitro Retn overexpression in adult mouse cardiomyocytes activated miR148b-3p and reduced Gadd45α expression. Gadd45α overexpression in H9C2-cardiomyoblasts protected against hydrogen peroxide- and Retn-induced DDR.
Conclusion: These findings reveal that diminution in circulating Retn reduced myocardial fibrosis and apoptosis, and improved heart function in a mouse model of HF, at least in part, through attenuation of miR148b-3p and DDR. The results of this study indicate that controlling Retn levels may provide a potential therapeutic approach for treating pressure overload-induced HF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239578 | PMC |
http://dx.doi.org/10.1093/cvr/cvab234 | DOI Listing |
Cytojournal
November 2024
Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, College of Basic Medicine, Jiamusi University, Jiamusi, China.
Objective: Colorectal cancer (CRC) remains a remarkable challenge despite considerable advancements in its treatment, due to its high recurrence rate, metastasis, drug resistance, and heterogeneity. Molecular targets that can effectively inhibit CRC growth must be identified to address these challenges. Therefore, we aim to reveal the regulatory effect of ribosomal protein L22-like 1 (RPL22L1) on the proliferation and apoptosis of CRC cells and its potential mechanism.
View Article and Find Full Text PDFEur J Med Chem
February 2025
The First Affiliated Hospital, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China. Electronic address:
Evodiamine has been a promising lead structure with broad-spectrum antitumor activity. Druggability optimization is the most challenging part of evodiamine-based lead-to-candidate campaign. Amino acids as building blocks for conjugates are widely incorporated into approved drug and drug candidates, demonstrating highly attractive druggability.
View Article and Find Full Text PDFNMR Biomed
January 2025
Department of Radiology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA.
Diabetes affects metabolism and metabolite concentrations in multiple organs. Previous preclinical studies have shown that receptor for advanced glycation end products (RAGE, gene symbol Ager) and its cytoplasmic domain binding partner, Diaphanous-1 (DIAPH1), are key mediators of diabetic micro- and macro-vascular complications. In this study, we used H-Magnetic Resonance Spectroscopy (MRS) and chemical shift encoded (CSE) Magnetic Resonance Imaging (MRI) to investigate the metabolite and water-fat fraction in the heart and hind limb muscle in a murine model of type 1 diabetes (T1D) and to determine if the metabolite changes in the heart and hind limb are influenced by (a) deletion of Ager or Diaph1 and (b) pharmacological blockade of RAGE-DIAPH1 interaction in mice.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Department of Biomedical Engineering and Diagnostic Pharmacy, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China. Electronic address:
Targeted protein degradation (TPD) technologies, particularly proteolysis targeting chimeras (PROTACs), have emerged as a promising branch of targeted therapy. Current ubiquitin-proteasome-dependent TPD technologies are limited to targeting intracellular proteins. Although the blockade of immune checkpoints has achieved great clinical success, most immune checkpoints are transmembrane proteins, which are difficult to be ubiquitinated and degraded by PROTACs.
View Article and Find Full Text PDFThe distinct subjective effects that define psychedelics such as LSD, psilocybin or DOI as drug class are causally linked to activation of the serotonin 2A receptor (5-HT R). However, some aspects of 5-HT R pharmacology remain elusive, such as what molecular drivers differentiate psychedelic from non-psychedelic 5-HT R agonists. We developed an ex vivo platform to obtain snapshots of drug-mediated 5-HT R engagement of the canonical G pathway in native tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!