AI Article Synopsis

  • Methanol steam reforming (MSR) is an effective method for producing hydrogen but typically requires high temperatures that lead to increased energy consumption.
  • A new plasmonic ZnCu alloy catalyst uses solar energy to drive the MSR process without needing extra heat, enhancing efficiency.
  • Zn atoms in the catalyst lower activation energy and facilitate charge transfer, resulting in a high hydrogen production rate of 328 mmol g h with a solar energy conversion efficiency of 1.2%, surpassing traditional methods.

Article Abstract

Methanol steam reforming (MSR) is a promising reaction that enables efficient production and safe transportation of hydrogen, but it requires a relatively high temperature to achieve high activity, leading to large energy consumption. Here, we report a plasmonic ZnCu alloy catalyst, consisting of plasmonic Cu nanoparticles with surface-deposited Zn atoms, for efficient solar-driven MSR without additional thermal energy input. Experimental results and theoretical calculations suggest that Zn atoms act not only as the catalytic sites for water reduction with lower activation energy but also as the charge transfer channel, pumping hot electrons into water molecules and subsequently resulting in the formation of electron-deficient Cu for methanol activation. These merits together with photothermal heating render the optimal ZnCu catalyst a high H production rate of 328 mmol g h with a solar energy conversion efficiency of 1.2% under 7.9 Suns irradiation, far exceeding the reported conventional photocatalytic and thermocatalytic MSR. This work provides a potential strategy for efficient solar-driven H production and various other energy-demanding industrial reactions through designing alloy catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c04315DOI Listing

Publication Analysis

Top Keywords

methanol activation
8
solar-driven production
8
plasmonic zncu
8
zncu alloy
8
efficient solar-driven
8
triggering water
4
water methanol
4
activation solar-driven
4
production
4
production interplay
4

Similar Publications

Comprehensive analysis of flower extracts: phytochemical composition and toxicity in zebrafish embryos.

Nat Prod Res

January 2025

Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil.

(L.) R. Br.

View Article and Find Full Text PDF

Immunomodulatory Potential of a Bibenzyl-dihydrophenanthrene Derivative Isolated from .

J Nat Prod

January 2025

Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.

Bibenzyls and dihydrophenanthrenes exhibit promising immunomodulatory effects in various human diseases. In this study, we isolated one new dihydrophenanthrene derivative (), two new bibenzyl-dihydrophenanthrene derivatives () along with 12 known compounds (-) from the methanol extract of . These compounds were identified by using physicochemical analyses and spectroscopic methods.

View Article and Find Full Text PDF

Plantago atrata Hoppe is a high-altitude mountain plant exposed to harsh environmental factors. This study aims to elucidate the ecological, phytochemical and pharmacological characteristics of this lesser-known plantain. Despite nutrient-poor peat soil, the leaves of P.

View Article and Find Full Text PDF

In-vitro susceptibility of pathogenic and intermediate Leptospira species towards antibiotics and herb extracts.

Trop Biomed

December 2024

Resource Biotechnology Programme, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.

Leptospirosis is a severe and potentially fatal re-emerging zoonotic and waterborne disease caused by pathogenic and intermediate species of Leptospira. Given the high global rates of morbidity and mortality associated with this disease, there is an urgent need to explore alternative therapeutic agents to enhance treatment options. This study investigates the anti-leptospiral efficacy of several common antibiotics-penicillin G, doxycycline, ampicillin, amoxicillin, cefotaxime, chloramphenicol, and erythromycin, as well as extracts from local herbs, Hydnophytum formicarum Jack and Boesenbergia stenophylla, against pathogenic and intermediate Leptospira strains.

View Article and Find Full Text PDF

In light of the adverse effects of chemical insecticides on the environment and human health, as well as the development of mosquito resistance to them, this study explores the potential of methanol and aqueous flower extracts from Lavandula dentata and Nerium oleander as bioinsecticides against Culiseta longiareolata mosquitoes. Additionally, it aims to assess the impact of these extracts on enzymatic biomarkers and biochemical composition of fourth instar larvae of Culiseta longiareolata.Qualitative analysis revealed the presence of flavonoids, terpenes, gallic and catechic tannins in both plant extracts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!