Lesions in the primary visual cortex (V1) cause extensive retrograde degeneration in the lateral geniculate nucleus, but it remains unclear whether they also trigger any neuronal loss in other subcortical visual centers. The inferior (IPul) and lateral (LPul) pulvinar nuclei have been regarded as part of the pathways that convey visual information to both V1 and extrastriate cortex. Here, we apply stereological analysis techniques to NeuN-stained sections of marmoset brain, in order to investigate whether the volume of these nuclei, and the number of neurons they comprise, change following unilateral long-term V1 lesions. For comparison, the medial pulvinar nucleus (MPul), which has no connections with V1, was also studied. Compared to control animals, animals with lesions incurred either 6 weeks after birth or in adulthood showed significant LPul volume loss following long (> 11 months) survival times. However, no obvious areas of neuronal degeneration were observed. In addition, estimates of neuronal density in lesioned hemispheres were similar to those in the non-lesioned hemispheres of same animals. Our results support the view that, in marked contrast with the geniculocortical projection, the pulvinar pathway is largely spared from the most severe long-term effects of V1 lesions, whether incurred in early postnatal or adult life. This difference can be linked to the more divergent pattern of pulvinar connectivity to the visual cortex, including strong reciprocal connections with extrastriate areas. The results also caution against interpretation of volume loss in brain structures as a marker for neuronal degeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00429-021-02345-1 | DOI Listing |
Arch Gerontol Geriatr
December 2024
Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China. Electronic address:
PLoS Biol
January 2025
Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America.
Throughout the animal kingdom, several members of the basic helix-loop-helix (bHLH) family act as proneural genes during early steps of nervous system development. Roles of bHLH genes in specifying terminal differentiation of postmitotic neurons have been less extensively studied. We analyze here the function of 5 Caenorhabditis elegans bHLH genes, falling into 3 phylogenetically conserved subfamilies, which are continuously expressed in a very small number of postmitotic neurons in the central nervous system.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Neurodegenerative Diseases Laboratory, Center for Biomedicine, Universidad Mayor, Avenida Alemania 0281, 4780000, Temuco, La Araucanía, Chile.
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by tremor, rigidity, and bradykinesia, beginning with early loss of dopaminergic neurons in the ventrolateral substantia nigra and advancing to broader neurodegeneration in the midbrain. The clinical heterogeneity of PD and the lack of specific diagnostic tests present significant challenges, highlighting the need for reliable biomarkers for early diagnosis. Alpha-synuclein (α-Syn), a protein aggregating into Lewy bodies and neurites in PD patients, has emerged as a key biomarker due to its central role in PD pathophysiology and potential to reflect pathological processes.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
Aluminium is a common metallic toxicant that easily penetrates the brain and exerts severe pathological effects e.g., oxidative stress, inflammation and neurodegeneration.
View Article and Find Full Text PDFProgrammed cell death (apoptosis) is essential part of the process of tissue regeneration that also plays role in the mechanism of pathology. The phenomenon of fast and transient permeability of mitochondrial membranes by various triggers, known as permeability transition pore (mPTP) leads to the release of proapoptotic proteins and acts as an initial step in initiation of apoptosis. However, a role for mPTP was also suggested for physiology and it is unclear if there is a threshold in number of mitochondria with mPTP which induces cell death and how this mechanism is regulated in different tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!