Bruton's tyrosine kinase (Btk) is a crucial signaling molecule in BCR signaling and a key regulator of B- cell differentiation and function. Btk inhibition has shown impressive clinical efficacy in various B-cell malignancies. However, it remains unknown whether inhibition additionally induces changes in BCR signaling due to feedback mechanisms, a phenomenon referred to as BCR rewiring. In this report, we studied the impact of Btk activity on major components of the BCR signaling pathway in mice. As expected, NF-κB and Akt/S6 signaling was decreased in Btk-deficient B cells. Unexpectedly, phosphorylation of several proximal signaling molecules, including CD79a, Syk, and PI3K, as well as the key Btk-effector PLCγ2 and the more downstream kinase Erk, were significantly increased. This pattern of BCR rewiring was essentially opposite in B cells from transgenic mice overexpressing Btk. Importantly, prolonged Btk inhibitor treatment of WT mice or mice engrafted with leukemic B cells also resulted in increased phosho-CD79a and phospho-PLCγ2 in B cells. Our findings show that Btk enzymatic function determines phosphorylation of proximal and distal BCR signaling molecules in B cells. We conclude that Btk inhibitor treatment results in rewiring of BCR signaling, which may affect both malignant and healthy B cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291019 | PMC |
http://dx.doi.org/10.1002/eji.202048968 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!