Background And Aims: NASH is an advanced stage of liver disease accompanied by lipid accumulation, inflammation, and liver fibrosis. Guanine nucleotide-binding protein G(i) subunit alpha-2 (GNAI2) is a member of the "inhibitory" class of α-subunits, and recent studies showed that Gnai2 deficiency is known to cause reduced weight in mice. However, the role of GNAI2 in hepatocytes, particularly in the context of liver inflammation and lipid metabolism, remains to be elucidated. Herein, we aim to ascertain the function of GNAI2 in hepatocytes and its impact on the development of NASH.

Approach And Results: Human liver tissues were obtained from NASH patients and healthy persons to evaluate the expression and clinical relevance of GNAI2. In addition, hepatocyte-specific Gnai2-deficient mice (Gnai2 ) were fed either a Western diet supplemented with fructose in drinking water (WDF) for 16 weeks or a methionine/choline-deficient diet (MCD) for 6 weeks to investigate the regulatory role and underlying mechanism of Gnai2 in NASH. GNAI2 was significantly up-regulated in liver tissues of patients with NASH. Following feeding with WDF or MCD diets, livers from Gnai2 mice had reduced steatohepatitis with suppression of markers of inflammation and an increase in lipophagy compared to Gnai2 mice. Toll-like receptor 4 signals through nuclear factor kappa B to trigger p65-dependent transcription of Gnai2. Intriguingly, immunoprecipitation, immunofluorescence, and mass spectrometry identified peroxiredoxin 1 (PRDX1) as a binding partner of GNAI2. Moreover, the function of PRDX1 in the suppression of TNF receptor-associated factor 6 ubiquitin-ligase activity and glycerophosphodiester phosphodiesterase domain-containing 5-related phosphatidylcholine metabolism was inhibited by GNAI2. Suppression of GNAI2 combined with overexpression of PRDX1 reversed the development of steatosis and fibrosis in vivo.

Conclusions: GNAI2 is a major regulator that leads to the development of NASH. Thus, inhibition of GNAI2 could be an effective therapeutic target for the treatment of NASH.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.32078DOI Listing

Publication Analysis

Top Keywords

gnai2
16
guanine nucleotide-binding
8
nucleotide-binding protein
8
protein subunit
8
gnai2 hepatocytes
8
liver tissues
8
gnai2 mice
8
nash
7
liver
5
subunit alpha
4

Similar Publications

Specialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium.

View Article and Find Full Text PDF

Early-Life Stress Influences the Transcriptional Activation of Alpha-2A Adrenergic Receptor and Associated Protein Kinase A Signaling Molecules in the Frontal Cortex of Rats.

Mol Neurobiol

November 2024

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 2nd Avenue South, Birmingham, AL, USA.

Early life is a highly sensitive period associated with profound changes in brain structure and function. Adverse experiences of early-life stress (ELS) are prominent risk factors for the precipitation of major depressive disorder (MDD). In recent years, dysfunction of the central noradrenergic (NA) system and subsequent deficits in norepinephrine (NE) signaling have gained increasing attention in the pathophysiology of MDD.

View Article and Find Full Text PDF

Hypoxic stress can result in redox imbalance and apoptosis in teleostean fishes; however, the precise molecular mechanisms underlying this process, including its regulation by the key signaling pathway Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2 related factor (Nrf2)/antioxidant response element (ARE), remain elusive. Therefore, in this study, we chose the Keap1-Nrf2/ARE signaling pathway as the entry point and a combination of in vivo (target organ liver) and in vitro (small yellow croaker fry [SYCF] cell line) experiments to investigate the molecular mechanism by which Larimichthys polyactis (L. polyactis) adapts to hypoxic stress by regulating redox balance and apoptosis.

View Article and Find Full Text PDF

Germline mutations in a G protein identify signaling cross-talk in T cells.

Science

September 2024

Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.

Article Synopsis
  • Researchers studied mutations in a gene that affects a key protein involved in cell signaling, which is linked to severe health issues like impaired immunity in patients.
  • The mutations were found to disrupt normal cell behavior by promoting excessive cell growth and responses to immune signals, specifically T cell receptor stimulation.
  • The mutant protein was shown to interfere with a regulatory protein, leading to heightened activity of important signaling pathways that contribute to cell growth and survival.
View Article and Find Full Text PDF

Inflammatory Bowel Diseases (IBD), which encompass ulcerative colitis (UC) and Crohn's disease (CD), are characterized by chronic inflammation and tissue damage of the gastrointestinal tract. This study aimed to uncover novel disease-gene signatures, dysregulated pathways, and the immune cell infiltration landscape of inflamed tissues. Eight publicly available transcriptomic datasets, including inflamed and non-inflamed tissues from CD and UC patients were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!