Soil aggregates not only store carbon (C) and nitrogen (N) but hold a critical role in determining the nutrients supply, crop productivity, and climate change mitigation. However, the impact of cropping system and N fertilization on aggregate-associated C and N in both topsoil and subsoil remains unclear. Here, we assessed the effect of cropping systems (wheat-soybean vs. wheat-maize cropping systems) and N fertilization rates (0 N; medium N, 120 kg N ha; high N, 240 kg N ha) on soil water-stable aggregates distribution, as well as aggregate-associated C and N based on a field study in North China Plain. Our study suggests that the variations of soil organic carbon (SOC) and total nitrogen (TN) stocks were more affected by N fertilization than short-term cropping systems. In the wheat-soybean system, medium N increased the SOC stock by 19.18% and 15.73% as compared to high N in the topsoil and subsoil, respectively. Additionally, medium N resulted in 6.59-18.11% higher TN stock in the topsoil for both wheat-soybean and wheat-maize cropping systems as compared to 0 N and high N. Notably, the water-stable macroaggregates (> 0.25 mm) in the topsoil occupied more than 70% of the soil, which increased under medium N in the wheat-soybean cropping system. In conclusion, medium N fertilization combined with a legume-based cropping could be used to improve SOC stock, promote soil aggregation, and enhance aggregate-associated C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-15562-2 | DOI Listing |
PLoS One
January 2025
Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada.
The risk of national food supply disruptions is linked to both domestic production and food imports. But assessments of climate change risks for food systems typically focus on the impacts on domestic production, ignoring climate impacts in supplying regions. Here, we use global crop modeling data in combination with current trade flows to evaluate potential climate change impacts on national food supply, comparing impacts on domestic production alone (domestic production impacts) to impacts considering how climate change impacts production in all source regions (consumption impact).
View Article and Find Full Text PDFFunct Plant Biol
January 2025
National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan.
Rice (Oryza sativa ) is a crucial staple crop worldwide, providing nutrition to more than half of the global population. Nonetheless, the sustainability of grain production is increasingly jeopardized by both biotic and abiotic stressors exacerbated by climate change, which increases the crop's rvulnerability to pests and diseases. Genome-editing by clustered regularly interspaced short palindromic repeats and CRISPR-associated Protein 9 (CRISPR-Cas9) presents a potential solution for enhancing rice productivity and resilience under climatic stress.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kansas Medical Center, Kansas City, KS, USA.
Background: Alzheimer's Disease (AD) is a systemic metabolic disease with a variable number and type of clinical symptoms mostly impacting the brain. Skin carotenoid content (SCC) is an objective measure of carotenoid-containing fruit and vegetable intake that has been validated in diverse populations. Our previous findings suggest SCC scores differ between older adults with and without AD regardless of dietary intake of carotenoids.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Institute of Science and Technology, Sao Paulo State University, Av. Três de Março, 511 - Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil.
Polymer-based herbicide nanocarriers have shown potential for increasing the herbicide efficacy and environmental safety. This study aimed to develop, characterize, and evaluate toxicity to target and nontarget organisms of natural-based polymeric nanosystems for glyphosate. Polymers such as chitosan (CS), zein (ZN), and lignin (LG) were used in the synthesis.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Geography, University of Sindh, Jamshoro, Sindh, Pakistan.
This study applied integrated statistical approaches, including GIS mapping and the water quality index (WQI), to assess the quality of water, soil, and plant samples which collected from Darawat Dam, Sindh, Pakistan. The samples were analyzed for physicochemical parameters and metal analyses. Results of cations in water samples were in the range Na 26.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!