Three-dimensional (3D) printing has gained popularity in tissue engineering and in the field of cartilage regeneration. This is due to its potential to generate scaffolds with spatial variation of cell distribution or mechanical properties, built with a variety of materials that can mimic complex tissue architecture. In the present study, horse articular chondrocytes were cultured for 2 and 4 weeks in 3D-printed chitosan (CH)-based scaffolds prepared with or without hyaluronic acid and in the presence of fetal bovine serum (FBS) or platelet lysate (PL). These 3D culture systems were analyzed in terms of their capability to maintain chondrocyte differentiation . This was achieved by evaluating cell morphology, immunohistochemistry (IHC), gene expression of relevant cartilage markers (), and specific markers of dedifferentiated phenotype (). The morphological, histochemical, immunohistochemical, and molecular results demonstrated that the 3D CH scaffold is sufficiently porous to be colonized by primary chondrocytes. Thereby, it provides an optimal environment for the colonization and synthetic activity of chondrocytes during a long culture period where a higher rate of dedifferentiation can be generally observed. Enrichment with hyaluronic acid provides an optimal microenvironment for a more stable maintenance of the chondrocyte phenotype. The use of 3D CH scaffolds causes a further increase in the gene expression of most relevant ECM components when PL is added as a substitute for FBS in the medium. This indicates that the latter system enables a better maintenance of the chondrocyte phenotype, thereby highlighting a fair balance between proliferation and differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8311290PMC
http://dx.doi.org/10.3389/fvets.2021.671776DOI Listing

Publication Analysis

Top Keywords

hyaluronic acid
12
horse articular
8
articular chondrocytes
8
3d-printed chitosan
8
platelet lysate
8
gene expression
8
expression relevant
8
maintenance chondrocyte
8
chondrocyte phenotype
8
cultured horse
4

Similar Publications

Polymer based nanoformulations offer substantial prospects for efficacious chemotherapy delivery. Here, we developed a pH-responsive polymeric nanoparticle based on acidosis-triggered breakdown of boronic ester linkers. A biocompatible hyaluronic acid (HA) matrix served as a substrate for carrying a doxorubicin (DOX) prodrug which also possesses natural affinity for CD44 cells.

View Article and Find Full Text PDF

With the growing demand for aesthetic enhancements, particularly filler injections for nasolabial folds (NLFs), there is a need for more objective and quantitative assessment methods beyond the traditional subjective scales like the Wrinkle Severity Rating Scale (WSRS). This study introduces a novel evaluation method combining 3-dimensional (3D) imaging and grayscale analysis to objectively assess NLF severity and treatment outcomes. A total of 100 healthy participants (86 females, 14 males; mean age 41.

View Article and Find Full Text PDF

ROS scavenging and corneal epithelial wound healing by a self-crosslinked tissue-adhesive hydrogel based-on dual-functionalized hyaluronic acid.

Int J Biol Macromol

December 2024

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China. Electronic address:

Reactive oxygen species (ROS) scavenging is a viable approach to promote corneal epithelium wound healing. This study created a single-component hydrogel (HA Gel) with a novel dual-functionalized hyaluronic acid derivative (HA-GA-PBA) containing gallol and phenylboronic acid (PBA) moieties. Both of these moieties were dual-functional.

View Article and Find Full Text PDF

Tumor-targeted nanosystem with hypoxia inducible factor 1α inhibition for synergistic chemo-photodynamic therapy against hypoxic tumor.

Colloids Surf B Biointerfaces

December 2024

School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; National Innovation Platform for medical industry-education integration, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Electronic address:

Photodynamic therapy (PDT) holds an essential role in the therapy of tumors. However, PDT consumes tissue oxygen and diminishes its own efficacy by inducing tumor hypoxia through the HIF-1α/VEGF pathway. Therefore, overcoming the photodynamic exacerbation of tumor hypoxia could reverse tumor microenvironment and enhance PDT.

View Article and Find Full Text PDF

Background: Among several skin fillers developed in recent decades, hyaluronic acid (HA) is a widely used filler for face contouring and is generally believed to be safe, long-lasting, not immunogenic, and cost-effective. However, early and delayed complications can also occur following HA filler injection. Unfortunately, there have been reports of HA-related bone erosion in the chin area without clear scientific data regarding its existence and incidence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!