represents a genus of phytopathogenic ascomycetous fungi with a worldwide distribution. In recent years, there has been an increase in the number of taxonomic studies on these fungi. Currently, there are 169 described species of based on comparisons of DNA sequence data, combined with morphological characteristics. However, for some of these species, the sequence data utilised at the time of their description were relatively limited. This has justified an urgent need to reconsider the species boundaries for based on robust genus-wide phylogenetic analyses. In this study, we utilised 240 available isolates including the ex-types of 128 species, and re-sequenced eight gene regions (, , , ITS, LSU, and ) for them. Sequences for 44 species, for which cultures could not be obtained, were downloaded from GenBank. DNA sequence data of all the 169 species were then used to determine their phylogenetic relationships. As a consequence, 51 species were reduced to synonymy, two new species were identified, and the name was validated. This resulted in the acceptance of 120 clearly defined spp. The overall data revealed that the genus includes 11 species complexes, distributed across the Prolate and Sphaero-Naviculate Groups known to divide . The results also made it possible to develop a robust set of DNA barcodes for spp. To accomplish this goal, we evaluated the outcomes of each of the eight candidate DNA barcodes for the genus, as well as for each of the 11 species complexes. No single gene region provided a clear identity for all species. Sequences of the and genes were the most reliable markers; those for the , , and gene regions also provided a relatively effective resolution for spp., while the ITS and LSU failed to produce useful barcodes for species discrimination. At the species complex level, results showed that the most informative barcodes were inconsistent, but that a combination of six candidate barcodes (, , , , and ) provided stable and reliable resolution for all 11 species complexes. A six-gene combined phylogeny resolved all 120 species, and revealed that , , , , and gene regions are effective DNA barcodes for .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295567 | PMC |
http://dx.doi.org/10.1016/j.simyco.2020.08.001 | DOI Listing |
Biodivers Data J
January 2025
Dynafor, INRAE, INP, ENSAT, 31326, Castanet Tolosan, France Dynafor, INRAE, INP, ENSAT, 31326 Castanet Tolosan France.
Background: DNA barcoding and metabarcoding are now powerful tools for studying biodiversity and especially the accurate identification of large sample collections belonging to diverse taxonomic groups. Their success depends largely on the taxonomic resolution of the DNA sequences used as barcodes and on the reliability of the reference databases. For wild bees, the barcode sequences coverage is consistently growing in volume, but some incorrect species annotations need to be cared for.
View Article and Find Full Text PDFPlant Divers
November 2024
CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.
Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants. However, conserved DNA barcoding markers, including complete plastid genome and nuclear ribosomal DNA (nrDNA) sequences, are inadequate for accurate species identification. Skmer, a recently proposed approach that estimates genetic distances among species based on unassembled genome skims, has been proposed to effectively improve species discrimination rate.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Experimental Research Center, China Academy of Chinese Medical Sciences Beijing 100700, China.
The chloroplast genome is an important tool for studying plant classification, evolution, and the heterologous production of secondary metabolites and protein drugs. With advancements in sequencing technology and reductions in sequencing costs, chloroplast genome data have rapidly accumulated. However, existing chloroplast genome databases suffer from issues such as incomplete data, inadequate management, and inconsistent, inaccurate information, posing significant challenges for the development and utilization of the chloroplast genome.
View Article and Find Full Text PDFBiodivers Data J
January 2025
Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University Baoding China.
Background: The genus Pocock, 1901 previously included 25 known species and one subspecies from Asia, 12 species and one subspecies were reported in China.
New Information: Five new species of Pocock, 1901 from southern China are described: (♂♀) from Hainan, (♂♀) from Chongqing, (♂♀) from Hunan, (♂) from Sichuan and (♂♀) from south part of Shaanxi. DNA barcodes of the new species described herein are provided.
Sci Rep
January 2025
National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, State Institute of Pharmaceutical Industry, 201203, Shanghai, People's Republic of China.
In Traditional Chinese Medicine (TCM), the medicinal leech is vital for treatments to promote blood circulation and eliminate blood stasis. However, the prevalence of counterfeit leech products in the market undermines the quality and efficacy of these remedies. Traditional DNA barcoding techniques, such as the COI barcode, have been limited in their application due to amplification challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!