Exposure to stress can accelerate maturation and hasten reproduction. Although potentially adaptive, the trade-off is higher risk for morbidity and mortality. In humans, the intergenerational effects of stress have been demonstrated, but the precise mechanisms are unknown. Strikingly, even if parental stress occurs prior to conception, as adults, their offspring show worse mental and physical health. Emerging evidence primarily from preclinical models suggests that epigenetic programming may encode preconception stress exposures in germ cells, potentially impacting the phenotype of the offspring. In this narrative review, we evaluate the strength of the evidence for this mechanism across animals and humans in both males and females. The strongest evidence comes from studies of male mice, in which paternal preconception stress is associated with a host of phenotypic changes in the offspring and stress-induced changes in the small non-coding RNA content in sperm have been implicated. Two recent studies in men provide evidence that some small non-coding RNAs in sperm are responsive to past and current stress, including some of the same ones identified in mice. Although preliminary evidence suggests that findings from mice may map onto men, the next steps will be (1) considering whether stress type, severity, duration, and developmental timing affect germ cell epigenetic markers, (2) determining whether germ cell epigenetic markers contribute to disease risk in the offspring of stress-exposed parents, and (3) overcoming methodological challenges in order to extend this research to females.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8311293 | PMC |
http://dx.doi.org/10.3389/fnhum.2021.642762 | DOI Listing |
ACS Synth Biol
December 2024
Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan.
Cell-free systems, which can express an easily detectable output (protein) with a DNA or mRNA template, are promising as foundations of biosensors devoid of cellular constraints. Moreover, by encasing them in membranes such as natural cells to create artificial cells, these systems can avoid the adverse effects of environmental inhibitory molecules. However, the bacterial systems generally used for this purpose do not function well at ambient temperatures.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary.
The effect of mycotoxin exposure on follicular fluid composition and reproductive outcomes in women undergoing in vitro fertilisation (IVF) was investigated in this study. Twenty-five patients were included, and follicular fluid and serum samples were analysed for various mycotoxins. Principal observations:1.
View Article and Find Full Text PDFMar Drugs
December 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia.
TRPA1 is a homotetrameric non-selective calcium-permeable channel. It contributes to chemical and temperature sensitivity, acute pain sensation, and development of inflammation. HCIQ2c1 is a peptide from the sea anemone that inhibits serine proteases.
View Article and Find Full Text PDFCurr Oncol
November 2024
Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy.
(1) Background: Testicular cancer, although accounting for only 0.5% to 1% of all solid male cancers, is the most common malignancy in males aged 15 to 35 years. Non-seminomatous germ cell tumors (NSGCT) represent nearly half of all testicular germ cell tumors and are associated with a more aggressive clinical course.
View Article and Find Full Text PDFAnimal Model Exp Med
December 2024
Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
Background: Traditional DNA microinjection methods used in mammals are difficult to apply to avian species due to their unique reproductive characteristics. Genetic manipulation in chickens, particularly involving immature follicles within living ovaries, has not been extensively explored. This study seeks to establish an efficient method for generating transgenic chickens through ovarian injection, potentially bypassing the challenges associated with primordial germ cell (PGC) manipulation and fertilized egg microinjection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!