A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Linear-in temperature resistivity from an isotropic Planckian scattering rate. | LitMetric

A variety of 'strange metals' exhibit resistivity that decreases linearly with temperature as the temperature decreases to zero, in contrast to conventional metals where resistivity decreases quadratically with temperature. This linear-in-temperature resistivity has been attributed to charge carriers scattering at a rate given by ħ/τ = αkT, where α is a constant of order unity, ħ is the Planck constant and k is the Boltzmann constant. This simple relationship between the scattering rate and temperature is observed across a wide variety of materials, suggesting a fundamental upper limit on scattering-the 'Planckian limit'-but little is known about the underlying origins of this limit. Here we report a measurement of the angle-dependent magnetoresistance of LaNdSrCuO-a hole-doped cuprate that shows linear-in-temperature resistivity down to the lowest measured temperatures. The angle-dependent magnetoresistance shows a well defined Fermi surface that agrees quantitatively with angle-resolved photoemission spectroscopy measurements and reveals a linear-in-temperature scattering rate that saturates at the Planckian limit, namely α = 1.2 ± 0.4. Remarkably, we find that this Planckian scattering rate is isotropic, that is, it is independent of direction, in contrast to expectations from 'hotspot' models. Our findings suggest that linear-in-temperature resistivity in strange metals emerges from a momentum-independent inelastic scattering rate that reaches the Planckian limit.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03697-8DOI Listing

Publication Analysis

Top Keywords

scattering rate
24
linear-in-temperature resistivity
12
planckian scattering
8
resistivity decreases
8
angle-dependent magnetoresistance
8
planckian limit
8
resistivity
6
scattering
6
rate
6
linear-in temperature
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!