SAMHD1 is a cellular triphosphohydrolase (dNTPase) proposed to inhibit HIV-1 reverse transcription in non-cycling immune cells by limiting the supply of the dNTP substrates. Yet, phosphorylation of T592 downregulates SAMHD1 antiviral activity, but not its dNTPase function, implying that additional mechanisms contribute to viral restriction. Here, we show that SAMHD1 is SUMOylated on residue K595, a modification that relies on the presence of a proximal SUMO-interacting motif (SIM). Loss of K595 SUMOylation suppresses the restriction activity of SAMHD1, even in the context of the constitutively active phospho-ablative T592A mutant but has no impact on dNTP depletion. Conversely, the artificial fusion of SUMO2 to a non-SUMOylatable inactive SAMHD1 variant restores its antiviral function, a phenotype that is reversed by the phosphomimetic TE mutation. Collectively, our observations clearly establish that lack of T592 phosphorylation cannot fully account for the restriction activity of SAMHD1. We find that SUMOylation of K595 is required to stimulate a dNTPase-independent antiviral activity in non-cycling immune cells, an effect that is antagonized by cyclin/CDK-dependent phosphorylation of T592 in cycling cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8319325 | PMC |
http://dx.doi.org/10.1038/s41467-021-24802-5 | DOI Listing |
mBio
September 2024
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
In humans, sterile alpha motif (SAM) domain- and histidine-aspartic acid (HD) domain-containing protein 1 (SAMHD1) is a dNTPase enzyme that prevents HIV-1 infection in non-cycling cells, such as differentiated THP-1 cells and human primary macrophages. Although phosphorylation of threonine 592 (T592) in SAMHD1 is recognized as the primary regulator of the ability to prevent HIV-1 infection, the contributions of SAMHD1 acetylation to this ability remain unknown. Mass spectrometry analysis of SAMHD1 proteins derived from cycling and non-cycling THP-1 cells, primary cycling B cells, and primary macrophages revealed that SAMHD1 is preferentially acetylated at lysine residues 354, 494, and 580 (K354, K494, and K580).
View Article and Find Full Text PDFImmunity
October 2021
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Electronic address:
In tumors, a subset of CD8 T cells expressing the transcription factor TCF-1 drives the response to immune checkpoint blockade. We examined the mechanisms that maintain these cells in an autochthonous model of lung adenocarcinoma. Longitudinal sampling and single-cell sequencing of tumor-antigen specific TCF-1 CD8 T cells revealed that while intratumoral TCF-1 CD8 T cells acquired dysfunctional features and decreased in number as tumors progressed, TCF-1 CD8 T cell frequency in the tumor draining LN (dLN) remained stable.
View Article and Find Full Text PDFNat Commun
July 2021
INSERM U944, CNRS UMR 7212, Genomes & Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France.
SAMHD1 is a cellular triphosphohydrolase (dNTPase) proposed to inhibit HIV-1 reverse transcription in non-cycling immune cells by limiting the supply of the dNTP substrates. Yet, phosphorylation of T592 downregulates SAMHD1 antiviral activity, but not its dNTPase function, implying that additional mechanisms contribute to viral restriction. Here, we show that SAMHD1 is SUMOylated on residue K595, a modification that relies on the presence of a proximal SUMO-interacting motif (SIM).
View Article and Find Full Text PDFExp Cell Res
November 2019
INSERM U1052, CNRS 5286, Univ Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France. Electronic address:
Human hepatocarcinogenesis is a complex process with many unresolved issues, including the cell of origin (differentiated and/or progenitor/stem cells) and the initial steps leading to tumor development. With the aim of providing new tools for studying hepatocellular carcinoma initiation and progression, we developed an innovative model based on primary human hepatocytes (PHHs) lentivirus-transduced with SV40, HRAS with or without hTERT. The differentiation status of these transduced-PHHs was characterized by RNA sequencing (including lncRNAs), and the expression of some differentiation markers confirmed by RT-qPCR and immunofluorescence.
View Article and Find Full Text PDFFront Immunol
November 2020
Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.
Vpr is a 14 kDa accessory protein conserved amongst extant primate lentiviruses that is required for virus replication . Although many functions have been attributed to Vpr, its primary role, and the function under selective pressure , remains elusive. The minimal importance of Vpr in infection of activated CD4+ T cells suggests that its major importance lies in overcoming restriction to virus replication in non-cycling myeloid cell populations, such as macrophages and dendritic cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!