Neural entrainment refers to the tendency of neural activity to align with an ongoing rhythmic stimulus. Measures of neural entrainment have been increasingly leveraged as a tool to understand how the brain tracks different types of regularities in sensory input. However, the methods used to quantify neural entrainment are varied, with numerous analytic decision points whose consequences have not been well-characterized. In a valuable contribution to this field, Benjamin, Dehaene-Lambertz and Flo (submitted) systematically compare various methodological approaches for studying neural entrainment. They demonstrate that the use of overlapping epochs, in which sliding time windows are extracted and analyzed, results in an artifactual inflation of entrainment estimates at the frequency of overlap. Here, in response to this updated best practice recommendation, we reanalyzed three previously published datasets that had been previously analyzed with overlapping epochs. Although our main results and conclusions are unaltered from those originally reported, we agree with Benjamin and colleagues that overlapping epochs should generally be avoided in classic analyses of steady-state experiments, which aim to quantify overall peaks in phase or power across an entire experimental duration. However, we present a case that overlapping epochs may be beneficial in fine-grained analyses of neural entrainment over time. The use of overlapping epochs in such analyses could improve temporal resolution without complicating interpretability of the results in cases where the question of interest relates to relative changes in neural entrainment over time within a given frequency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cortex.2021.06.008DOI Listing

Publication Analysis

Top Keywords

neural entrainment
24
overlapping epochs
20
benjamin colleagues
8
entrainment time
8
neural
7
entrainment
7
overlapping
5
epochs
5
optimizing steady-state
4
steady-state responses
4

Similar Publications

Subthalamic nucleus deep brain stimulation in the beta frequency range boosts cortical beta oscillations and slows down movement.

J Neurosci

January 2025

Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Germany

Recordings from Parkinson's disease (PD) patients typically show strong beta-band oscillations (13-35Hz), which can be modulated by deep brain stimulation (DBS). While high-frequency DBS (>100Hz) ameliorates motor symptoms and reduces beta activity in basal ganglia and motor cortex, the effects of low-frequency DBS (<30Hz) are less clear. Clarifying these effects is relevant for the debate about the role of beta oscillations in motor slowing, which might be causal or epiphenomenal.

View Article and Find Full Text PDF

Circadian entrainment and external cues can cause gene transcript abundance to oscillate throughout the day, and these patterns of diel transcript oscillation vary across genes and plant species. Less is known about within-species allelic variation for diel patterns of transcript oscillation, or about how regulatory sequence variation influences diel transcription patterns. In this study, we evaluated diel transcript abundance for 24 diverse maize inbred lines.

View Article and Find Full Text PDF

Electroencephalography is instrumental in understanding neurophysiological mechanisms underlying working memory. While numerous studies have associated electroencephalography features to working memory, understanding causal relationships leads to better characterization of the neurophysiological mechanisms that are directly linked to working memory. Personalized causal modeling is a tool to discover these direct links between brain features and working memory performance.

View Article and Find Full Text PDF

Transient disruption or permanent damage to the left Frontal Aslant Tract (FAT) is associated with deficits in speech production. The present study examined the application of theta (4 Hz) high-definition transcranial alternating current stimulation (HD-tACS) over the left SMA and IFG -as a part of FAT- as a potential multisite protocol to modulate neural and behavioral correlates of speech motor control. Twenty-one young adults participated in three counterbalanced sessions in which they received in-phase, anti-phase, and sham theta HD-tACS.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effect of 40-Hz audiovisual stimulation on seizure susceptibility and amyloid-beta plaque levels in 5xFAD mice, a model for Alzheimer's disease.
  • Results showed that this sensory stimulation decreased seizure severity and delayed epileptogenesis, with 5xFAD mice experiencing about a 50% reduction in amyloid pathology compared to those without stimulation.
  • The findings suggest that 40-Hz stimulation may benefit both the reduction of Aβ pathology and possibly influence glial cells, impacting seizure activity, even in mice without amyloid plaques.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!