AI Article Synopsis

  • The placenta is crucial in mammals for nutrient exchange and immune tolerance between mother and fetus, but its unique characteristics in humans compared to other mammals need further research.
  • A study comparing the placentas of humans, macaques, and mice revealed many genes specifically expressed in humans, including those linked to pregnancy and embryonic development.
  • The research also found that unique enhancers in the human placenta are often connected to endogenous retroviruses, which may play a role in immune response and function, highlighting how these genetic factors contribute to the evolution of the mammalian placenta.

Article Abstract

In mammals, the placenta mediates maternal-fetal nutrient and waste exchange and acts in an immunomodulatory way to facilitate maternal-fetal tolerance. The placenta is highly diverse across mammalian species, yet the molecular mechanisms that distinguish the placenta of human from other mammals are not fully understood. Using an interspecies transcriptomic comparison of human, macaque, and mouse late-gestation placentae, we identified hundreds of genes with lineage-specific expression-including dozens that are placentally enriched and potentially related to pregnancy. We further annotated the enhancers for different human tissues using epigenomic data and demonstrate that the placenta and chorion are unique in that their enhancers display the least conservation. We identified numerous lineage-specific human placental enhancers and found they highly overlap with specific families of endogenous retroviruses (ERVs), including MER21A, MER41A/B, and MER39B that were previously linked to immune response and placental function. Among these ERV families, we further demonstrate that MER41A/B insertions create dozens of lineage-specific serum response factor-binding loci in human, including one adjacent to FBN2, a placenta-specific gene with increased expression in humans that produces the peptide hormone placensin to stimulate glucose secretion and trophoblast invasion. Overall, our results demonstrate the prevalence of lineage-specific placental enhancers which are frequently associated with ERV insertions and likely facilitate the lineage-specific evolution of the mammalian placenta.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557419PMC
http://dx.doi.org/10.1093/molbev/msab223DOI Listing

Publication Analysis

Top Keywords

endogenous retroviruses
8
placental enhancers
8
lineage-specific
6
placenta
5
human
5
retroviruses drive
4
drive lineage-specific
4
lineage-specific regulatory
4
regulatory evolution
4
evolution primate
4

Similar Publications

Genetic gradual reduction of OGT activity unveils the essential role of O-GlcNAc in the mouse embryo.

PLoS Genet

January 2025

Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy.

The reversible glycosylation of nuclear and cytoplasmic proteins (O-GlcNAcylation) is catalyzed by a single enzyme, namely O-GlcNAc transferase (OGT). The mammalian Ogt gene is X-linked, and it is essential for embryonic development and for the viability of proliferating cells. We perturbed OGT's function in vivo by creating a murine allelic series of four single amino acid substitutions, reducing OGT's catalytic activity to a range of degrees.

View Article and Find Full Text PDF

Papillary thyroid cancer (PTC) is one of the fastest-growing cancers worldwide, lacking established causal factors or validated early diagnostics. Human endogenous retroviruses (HERVs), comprising 8% of human genomes, have potential as PTC biomarkers due to their comparably high baseline expression in healthy thyroid tissues, indicating homeostatic roles. However, HERV regions are often overlooked in genome-wide association studies because of their highly repetitive nature, low sequence coverage, and decreased sequencing quality.

View Article and Find Full Text PDF

The pluripotent stem cell (PSC)-derived human primordial germ cell-like cells (PGCLCs) are a cell culture-derived surrogate model of embryonic primordial germ cells. Upon differentiation of PSCs to PGCLCs, multiple loci of HML-2, the hominoid-specific human endogenous retrovirus (HERV), are strongly activated, which is necessary for PSC differentiation to PGCLCs. In PSCs, strongly activated loci of HERV-H family HERVs create chromatin contacts, which are required for the pluripotency.

View Article and Find Full Text PDF

Human endogenous retroviruses (HERVs) are genomic fragments integrated into human DNA from germline infections by exogenous retroviruses that threatened primates early in their evolution and are inherited vertically in the germline. So far, HERVs have been studied in the context of extensive immunopathogenic, neuropathogenic and even oncogenic effects within their host. In particular, in our paper, we elaborate on the aspects related to the possible correlation of transposable HERV elements' activation and SARS-CoV-2 spike protein's presence in cells of COVID-19 patients or upon COVID-19 vaccination with implications for natural and adaptive immunity.

View Article and Find Full Text PDF

Most psychiatric disorders are heterogeneous and are attributed to the synergistic action of a multitude of factors. It is generally accepted that psychiatric disorders are the outcome of interactions between genetic predisposition and environmental perturbations, which involve psychosocial stress, or alterations in the physiological state of the organism. A number of hypotheses have been presented on such environmental influences that may include direct insults such as injury, malnutrition and hostile living conditions, or indirect sequelae following infection from viruses such as influenza, arboviruses, enteroviruses and several herpesviruses, or the differential expression of human endogenous retroviruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!