Equivalent time active cavitation imaging.

Phys Med Biol

Engineering Physics Department, Polytechnique Montréal, Canada.

Published: September 2021

. Despite the development of a large number of neurologically active drugs, brain diseases are difficult to treat due to the inability of many drugs to penetrate the blood-brain barrier. High-intensity focused ultrasound (HIFU) blood-brain barrier opening in a site-specific manner could significantly expand the spectrum of available drug treatments. However, without monitoring, brain damage and off-target effects can occur during these treatments. While some methods can monitor inertial cavitation, temperature increase, or passively monitor cavitation events, to the best of our knowledge none of them can actively and spatiotemporally map the HIFU pressure field during treatment.. Here we detail the development of a novel ultrasound imaging modality called equivalent time active cavitation imaging (ETACI) capable of characterizing the HIFU pressure field through stable cavitation events across the field of view with an ultrafast active imaging setup. This work introduces (1) a novel plane wave sequence whose transmit delays increase linearly with transmit events enabling the sampling of high-frequency cavitation events, and (2) an algorithm allowing the processing of the microbubble signal for pressure field mapping. The pressure measurements with our modality were first carried outfor hydrophone comparison and thenduring blood-brain barrier opening treatment in mice.. This study demonstrates the capability of ETACI to spatiotemporally characterize a modulation pressure field with an active imaging setup. The resulting pressure field mapping reveals a good correlation with hydrophone measurements. Further results iareprovided experimentallywith promising results.. This proof of concept establishes the first steps towards a novel ultrasound modality for monitoring focused ultrasound blood-brain barrier opening, allowing new possibilities for a safe and precise monitoring method.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ac1877DOI Listing

Publication Analysis

Top Keywords

pressure field
20
blood-brain barrier
16
barrier opening
12
cavitation events
12
equivalent time
8
time active
8
active cavitation
8
cavitation imaging
8
focused ultrasound
8
hifu pressure
8

Similar Publications

Improving CO Removal Efficiency with Bio-Cellulose Acetate: A Multi-Stage Membrane Separation Approach.

Polymers (Basel)

January 2025

Biomass and Oil Palm Research Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand.

In this comprehensive investigation, the sustainable production and utilization of gas separation membranes derived from coconut water (CW) waste was investigated. The research focuses on the synthesis of bacterial cellulose (BC) and cellulose acetate (CA) membranes from CW, followed by a thorough analysis of their characteristics, including morphology, ATR-FTIR spectroscopy, tensile strength, and chemical composition. The study rigorously evaluates membrane performance, with particular emphasis on CO/CH selectivity under various operational conditions, including pressure, membrane thickness, and number of stages.

View Article and Find Full Text PDF

Carbon nanomaterials, particularly carbon nanotubes (CNTs), are widely used as reinforcing fillers in rubber composites for advanced mechanical and electrical applications. However, the influence of rubber functionality and its interactions with CNTs remains underexplored. This study investigates electroactive elastomeric composites fabricated with CNTs in two common diene rubbers: natural rubber (NR) and acrylonitrile-butadiene rubber (NBR), each with distinct functionalities.

View Article and Find Full Text PDF

Flexible, wearable, piezoresistive sensors have significant potential for applications in wearable electronics and electronic skin fields due to their simple structure and durability. Highly sensitive, flexible, piezoresistive sensors with the ability to monitor laryngeal articulatory vibration supply a new, more comfortable and versatile way to aid communication for people with speech disorders. Here, we present a piezoresistive sensor with a novel microstructure that combines insulating and conductive properties.

View Article and Find Full Text PDF

Self-Powered, Flexible, Transparent Tactile Sensor Integrating Sliding and Proximity Sensing.

Materials (Basel)

January 2025

Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China.

Tactile sensing is currently a research hotspot in the fields of intelligent perception and robotics. The method of converting external stimuli into electrical signals for sensing is a very effective strategy. Herein, we proposed a self-powered, flexible, transparent tactile sensor integrating sliding and proximity sensing (SFTTS).

View Article and Find Full Text PDF

Steel Ball Impact on SiC/AlSi12 Interpenetrated Composite by Peridynamics.

Materials (Basel)

January 2025

CT-Lab UG (Haftungsbeschränkt), Nobelstr. 15, 70569 Stuttgart, Germany.

Silicon carbide and an aluminum alloy (SiC/AlSi12) composite are obtained during the pressurized casting process of the aluminum alloy into the SiC foam. The foam acts as a high-stiffness skeleton that strengthens the aluminum alloy matrix. The goal of the paper is to describe the behavior of the material, considering its internal structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!