Resistance genes and extracellular proteins relieve antibiotic stress on the anammox process.

Water Res

Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Published: September 2021

The anaerobic ammonium oxidation (anammox) process is regarded as a promising approach to treat antibiotic-containing wastewater. Therefore, it is urgent to elucidate the effects of various antibiotics on the anammox process. Moreover, the mechanism of extracellular polymeric substance (EPS) as protective barriers to relieve antibiotic stress remain unclear. Therefore, the single and combined effects of erythromycin (ETC) and sulfamethoxazole (SMZ), and interactions between EPS and antibiotics were investigated in this study. Based on a 228-day continuous flow experiment, high concentrations of ETC and SMZ had significant inhibitory effects on the nitrogen removal performance of the anammox process, with the abundances of corresponding antibiotic resistance genes (ARGs) increasing. In addition, the combined inhibitory effect of the two antibiotics on the anammox process was more significant and longer-lasting than that of the single. However, the anammox process was able to quickly recover from deterioration. The tolerance of anammox granules to the stress of low-concentration antibiotics was probably attributed to the increase in ARGs and secretion of EPS. Molecular docking simulation results showed that proteins in EPS could directly bind with SMZ and ETC at the sites of GLU-307, HYS-191, ASP-318 and THR-32, respectively. These findings improved our understanding of various antibiotic effects on the anammox process and the interaction mechanism between antibiotics and proteins in EPS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.117453DOI Listing

Publication Analysis

Top Keywords

anammox process
28
resistance genes
8
relieve antibiotic
8
antibiotic stress
8
anammox
8
antibiotics anammox
8
proteins eps
8
process
7
antibiotics
5
eps
5

Similar Publications

Enhanced prediction of partial nitrification-anammox process in wastewater treatment by developing an attention-based deep learning network.

J Environ Manage

January 2025

School of Artificial Intelligence, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi, 710071, China.

In the process of partial nitrification and anaerobic ammonia oxidation (anammox) for nitrogen removal, the process offers simple metabolic pathways, low operating costs, and high nitrogenous loading rates. However, since the partial nitrification-anammox (PN-anammox) process combines partial nitrification and anammox reactions within the same reactor, strict control of dissolved oxygen (DO) is essential. Additionally, assessing treatment performance through chemical measurement involves time lag, making it challenging to recover the biological process when issue arise, especially in the PN-anammox process, where strict DO control and the sensitivity of anammox bacteria to conditions and substrates demand timely intervention.

View Article and Find Full Text PDF

The ratio of nitrogen (N) to argon (Ar) in landfill gas was compared to the atmospheric gas ratio to quantify the balance between N generating (anaerobic ammonium oxidation, denitrification) and N consuming (nitrogen fixation) processes on three landfills undergoing in-situ stabilization. In the aerated landfills, as much as 22% of the extracted N could be explained by net denitrification, with coexisting aerobic and anaerobic domains fostering nitrification-dependent denitrification. Nitrogen fixation was also occasionally observed.

View Article and Find Full Text PDF

How biofilm and granular sludge cope with dissolved oxygen exposure in anammox process: Performance, bioaccumulation characteristics and bacterial evolution.

J Environ Manage

December 2024

Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316022, PR China. Electronic address:

In order to study the resistance mechanisms of biofilm and granular sludge to various dissolved oxygen (DO) exposures in anaerobic ammonium oxidation (anammox) process, a biofilm - granular sludge anammox reactor was established and operated. Experimental results showed that DO levels of ≤0.41 mg L hardly affected the total nitrogen removal efficiency (TNRE).

View Article and Find Full Text PDF

Contribution of the microbial community to operational stability in an anammox reactor: Neutral theory and functional redundancy perspectives.

Bioresour Technol

December 2024

School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea. Electronic address:

A comprehensive understanding of microbial assembly is essential for achieving stable performance in biological wastewater treatment. Nevertheless, few studies have quantified these phenomena in detail, particularly in anammox-based processes. This study integrated mathematical and microbial approaches to analyze a 330-day anammox reactor with stable nitrogen removal efficiency (97 - 99%) despite changes in the high nitrogen loading rate, nitrogen concentration, and hydraulic retention time.

View Article and Find Full Text PDF

Global Relative Importance of Denitrification and Anammox in Microbial Nitrogen Loss Across Terrestrial and Aquatic Ecosystems.

Adv Sci (Weinh)

December 2024

Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, P.R. China.

Denitrification and anaerobic ammonium oxidation (anammox) are the major microbial processes responsible for global nitrogen (N) loss. Yet, the relative contributions of denitrification and anammox to N loss across contrasting terrestrial and aquatic ecosystems worldwide remain unclear, hampering capacities to predict the human alterations in the global N cycle. Here, a global synthesis including 3240 observations from 199 published isotope pairing studies is conducted and finds that denitrification governs microbial N loss globally (79.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!