The prokaryotic ubiquitin-like protein presents poor cleavage sites for proteasomal degradation.

Cell Rep

Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel. Electronic address:

Published: July 2021

In an event reminiscent of eukaryotic ubiquitination, the bacterial prokaryotic ubiquitin-like protein (Pup)-proteasome system (PPS) marks target proteins for proteasomal degradation by covalently attaching Pup, the bacterial tagging molecule. Yet, ubiquitin is released from its conjugated target following proteasome binding, whereas Pup enters the proteasome and remains conjugated to the target. Here, we report that although Pup can be degraded by the bacterial proteasome, it lacks favorable 20S core particle (CP) cleavage sites and is thus a very poor 20S CP substrate. Reconstituting the PPS in vitro, we demonstrate that during pupylated protein degradation, Pup can escape unharmed and remain conjugated to a target-derived degradation fragment. Removal of this degradation fragment by Dop, a depupylase, facilitates Pup recycling and re-conjugation to a new target. This study thus offers a mechanistic model for Pup recycling and demonstrates how a lack of protein susceptibility to proteasome-mediated cleavage can play a mechanistic role in a biological system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2021.109428DOI Listing

Publication Analysis

Top Keywords

prokaryotic ubiquitin-like
8
ubiquitin-like protein
8
cleavage sites
8
proteasomal degradation
8
conjugated target
8
degradation fragment
8
pup recycling
8
pup
6
degradation
5
protein
4

Similar Publications

Structure-Based Screening and Optimization of PafA Inhibitors with Potent Anti-Tuberculosis Activity.

Int J Mol Sci

December 2024

Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.

Tuberculosis (TB), caused by (), remains a major global health challenge, primarily due to the increasing prevalence of drug resistance. Consequently, the development of drugs with novel modes of action (MOAs) is urgently required. In this study, we discovered and characterized two potent inhibitors, Pi-1-58 and Pi-2-26, targeting the prokaryotic ubiquitin-like protein (Pup) ligase PafA of .

View Article and Find Full Text PDF

In , proteins that are posttranslationally modified with a prokaryotic ubiquitin-like protein (Pup) can be degraded by bacterial proteasomes. A single Pup-ligase and depupylase shape the pupylome, but the mechanisms regulating their substrate specificity are incompletely understood. Here, we identified a depupylation regulator, a protein called CoaX, through its copurification with the depupylase Dop.

View Article and Find Full Text PDF

Ubiquitination is an evolutionary, ancient system of post-translational modification of proteins that occurs through a cascade involving ubiquitin activation, transfer, and conjugation. The maturation of this system has followed two main pathways. The first is the conservation of a universal structural fold of ubiquitin and ubiquitin-like proteins, which are present in both Archaea and Bacteria, as well as in multicellular Eukaryotes.

View Article and Find Full Text PDF

SUMO modification is part of the spectrum of Ubiquitin-like (UBL) systems that give rise to proteoform complexity through post-translational modifications (PTMs). Proteoforms are essential modifiers of cell signaling for plant adaptation to changing environments. Exploration of the evolutionary emergence of Ubiquitin-like (UBL) systems unveils their origin from prokaryotes, where it is linked to the mechanisms that enable sulfur uptake into biomolecules.

View Article and Find Full Text PDF

Background: Tuberculosis (TB), a global infectious threat, has seen a concerning rise in aminoglycoside-resistant Mycobacterium tuberculosis (M.tb) strains. The potential role of capsule proteins remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!