A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adaptive local false discovery rate procedures for highly spiky data and their application RNA sequencing data of yeast SET4 deletion mutants. | LitMetric

Chromatin dynamics are central to the regulation of gene expression and genome stability. In order to improve understanding of the factors regulating chromatin dynamics, the genes encoding these factors are deleted and the differential gene expression profiles are determined using approaches such as RNA sequencing. Here, we analyzed a gene expression dataset aimed at uncovering the function of the relatively uncharacterized chromatin regulator, Set4, in the model system Saccharomyces cerevisiae (budding yeast). The main theme of this paper focuses on identifying the highly differentially expressed genes in cells deleted for Set4 (referred to as Set4 mutant dataset) compared to the wild-type yeast cells. The Set4 mutant data produce a spiky distribution on the log-fold changes of their expressions, and it is reasonably assumed that genes which are not highly differentially expressed come from a mixture of two normal distributions. We propose an adaptive local false discovery rate (FDR) procedure, which estimates the null distribution of the log-fold changes empirically. We numerically show that, unlike existing approaches, our proposed method controls FDR at the aimed level (0.05) and also has competitive power in finding differentially expressed genes. Finally, we apply our procedure to analyzing the Set4 mutant dataset.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723184PMC
http://dx.doi.org/10.1002/bimj.202000256DOI Listing

Publication Analysis

Top Keywords

gene expression
12
differentially expressed
12
adaptive local
8
local false
8
false discovery
8
discovery rate
8
rna sequencing
8
chromatin dynamics
8
highly differentially
8
expressed genes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!