DE-ETIOLATED1 has a role in the circadian clock of the liverwort Marchantia polymorpha.

New Phytol

Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and the Linnean Centre for Plant Biology in Uppsala, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden.

Published: October 2021

Previous studies of plant circadian clock evolution have often relied on clock models and genes defined in Arabidopsis. These studies identified homologues with seemingly conserved function, as well as frequent gene loss. In the present study, we aimed to identify candidate clock genes in the liverwort Marchantia polymorpha using a more unbiased approach. To identify genes with circadian rhythm we sequenced the transcriptomes of gemmalings in a time series in constant light conditions. Subsequently, we performed functional studies using loss-of-function mutants and gene expression reporters. Among the genes displaying circadian rhythm, a homologue to the transcriptional co-repressor Arabidopsis DE-ETIOLATED1 showed high amplitude and morning phase. Because AtDET1 is arrhythmic and associated with the morning gene function of AtCCA1/LHY, that lack a homologue in liverworts, we functionally studied DET1 in M. polymorpha. We found that the circadian rhythm of MpDET1 expression is disrupted in loss-of-function mutants of core clock genes and putative evening-complex genes. MpDET1 knock-down in turn results in altered circadian rhythm of nyctinastic thallus movement and clock gene expression. We could not detect any effect of MpDET1 knock-down on circadian response to light, suggesting that MpDET1 has a yet unknown function in the M. polymorpha circadian clock.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.17653DOI Listing

Publication Analysis

Top Keywords

circadian rhythm
16
circadian clock
12
circadian
8
liverwort marchantia
8
marchantia polymorpha
8
clock genes
8
loss-of-function mutants
8
gene expression
8
polymorpha circadian
8
mpdet1 knock-down
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!