Most of the dyes are toxic and non-biodegradable in textile industry wastewaters. Therefore, removal of textile dye using agriculture waste becomes crucial for the environment. This can be accomplished by the biosorption process which is the passive uptake of pollutants by agricultural waste. In this study, Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were used to obtain optimum conditions for Methylene Blue (MB) removal using sugarcane bagasse and peanut hulls as low-cost agricultural waste. The experimental design was carried out to study the effect of temperature, pH, biosorbent amount and dye concentration. The maximum MB dye removal considering the effect of total dissolved solids from aqueous solutions of 74.49% and 67.99% by sugarcane bagasse and peanut hulls, respectively. The models specify that they could predict biosorption with high accuracy having -value above 0.9. Statistical studies for RSM, ANFIS and ANN models were compared. Further, the models were optimized for maximum dye removal was at 1.21 g of biosorbent, pH 5.24, 31.24 mg/L MB concentration, 22.29°C of dye solution using sugarcane bagasse and at 1.37 g of biosorbent, pH 5.77, 36.7 mg/L MB concentration, 26.8°C of dye solution using peanut hulls. Additionally, Fourier Transform Infra-Red (FTIR) spectral analysis was also carried out to confirm the biosorption.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2021.1961874DOI Listing

Publication Analysis

Top Keywords

agricultural waste
12
sugarcane bagasse
12
peanut hulls
12
bagasse peanut
8
maximum dye
8
dye removal
8
dye solution
8
dye
6
artificial intelligence
4
intelligence optimizing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!