A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Epigenetic modifications underlie the differential adipogenic potential of preadipocytes derived from human subcutaneous fat tissue. | LitMetric

AI Article Synopsis

  • The study investigates the differences in adipogenic potential between ceiling culture-derived preadipocytes (ccdPAs) and adipose-derived stem cells (ASCs) isolated from human fat tissue.
  • Genome-wide epigenetic analysis revealed that ccdPAs have distinct methylation patterns and histone modifications, particularly in genes associated with adipogenesis, such as PPARγ, which contribute to their higher adipogenic potential.
  • The findings suggest that the epigenetic status of specific genes plays a significant role in the differentiation capabilities of these two cell types.

Article Abstract

Ceiling culture-derived preadipocytes (ccdPAs) and adipose-derived stem cells (ASCs) can be harvested from human subcutaneous fat tissue using the specific gravity method. Both cell types possess a similar spindle shape without lipid droplets. We previously reported that ccdPAs have a higher adipogenic potential than ASCs, even after a 7-wk culture. We performed a genome-wide epigenetic analysis to examine the mechanisms contributing to the adipogenic potential differences between ccdPAs and ASCs. Methylation analysis of cytosines followed by guanine (CpG) using a 450-K BeadChip was performed on human ccdPAs and ASCs isolated from three metabolically healthy females. Chromatin immunoprecipitation sequencing was performed to evaluate trimethylation at lysine 4 of histone 3 (H3K4me3). Unsupervised machine learning using t-distributed stochastic neighbor embedding to interpret 450,000-dimensional methylation assay data showed that the cells were divided into ASC and ccdPA groups. In Kyoto Encyclopedia of Genes and Genomes pathway analysis of 1,543 genes with differential promoter CpG methylation, the peroxisome proliferator-activated receptor (PPAR) and adipocytokine signaling pathways ranked in the top 10 pathways. In the PPARγ gene, H3K4me3 peak levels were higher in ccdPAs than in ASCs, whereas promoter CpG methylation levels were significantly lower in ccdPAs than in ASCs. Similar differences in promoter CpG methylation were also seen in the fatty acid-binding protein 4 and leptin genes. In conclusion, we analyzed the epigenetic status of adipogenesis-related genes as a potential mechanism underlying the differences in adipogenic differentiation capability between ASCs and ccdPAs.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00387.2020DOI Listing

Publication Analysis

Top Keywords

ccdpas ascs
16
adipogenic potential
12
promoter cpg
12
cpg methylation
12
human subcutaneous
8
subcutaneous fat
8
fat tissue
8
ccdpas
7
ascs
7
methylation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!