Xinjiang Province accounts for nearly 20% of the total grape (Vitis Vinifera L.), proles orientalis) (wine, table and raisin combined) production, being the largest production area in China. Fruit rot is the most common disease that impacts grape quality and yield. A new disease where the ripe grape berry surfaces were coated with brownish mildew was observed, and the disease mainly occurred on whole clusters or most of the berries in the cluster. In September 2019 and 2020, 125 diseased grape clusters were collected from 10 locations in northern Xinjiang where the disease incidence was 15.3% - 27.4% ((diseased clusters/ total clusters)*100). To identify the pathogen, symptomatic grape berries were disinfected with 1% NaClO for 2 min, followed by 70% ethanol for 30 s, and rinsed thrice in sterile distilled water. Three pieces of ~0.5 cm2 diseased grape skin with partial exocarp were placed on potato dextrose agar (PDA) amended with streptomycin sulfate and kanamycin (50 µg/mL each). The PDA plates were then incubated at 25℃ under light condition with the luminous intensity 3500 Lux for 7 days. Fungal colonies emerging from the plated tissue were subcultured and single-spored three times to obtain pure cultures. From 20 strains with similar colony phenotype and grey olive hue, flocculent, felt-like surface, six (Cc-Vivi-3, 7, 9, 11, 13 and 19) isolates were chosen for further characterization after 7 days of incubation. Conidia were either single or grew in chains, with around 4 conidia per chain. Conidia were ovoid, nearly spindle or globose with slightly smooth or irregular reticulate surface. Conidiophores were solitary, smooth, septate, erect or geniculate. These characteristics were consistent with the descriptions for Cladosporium cladosporioides. To confirm this identification, PCR was performed on the genomic DNA of the selected strains using primers for internal transcribed spacer (ITS) region ITS1/ITS4, actin (ACT) and translation elongation factor (TEF) (Schubert et al., 2007; Braun et al., 2003). Amplified ITS sequences provided a 100% match to C. cladosporioides (AY213641) in NCBI. Homology of ACT sequences to C. cladosporioides (HM148527 and MH047330) was 99.57% and 100%, respectively; and the homology of TEF sequences with C. cladosporioides (HM148258, HM148289, HM148260 and HM148266) was 97.56% ~ 100%. To further confirm the evolutionary relationship of strains from grapes with Cladosporium spp., phylogenetic analyses based on ITS, ACT and TEF conjoint sequences from the six experimental isolates, five C. cladosporioides strains, eight proximal Cladosporium species were analyzed. The phylogenetic tree showed that the six isolates from grapes clustered with C. cladosporioides strains, but not other proximal Cladosporium species. This confirmed that all six isolates evaluated were C. cladosporioides. Pathogenicity tests with one C. cladosporioides isolate (Cc-Vivi-3; accession No. ITS: MW556429, ACT: MW567144, TEF: MW567143) were carried out as follows: ripe and healthy grape clusters from cultivars Xinyu and Munag when total soluble solids were 20-21°Bx and 19-20 °Bx, respectively, were detached from the vines. Five berries of three clusters of each cultivar were punctured with a sterile syringe, then inoculated with a 20 μL conidial suspension (107 conidia/mL). And uninoculated, punctured berries in clusters treated with sterilized water served as controls. The experiment was repeated three times. Symptoms were recorded 15 days after incubation at 80% relative humidity and 25℃ with a 14 h light/10 h dark cycle. The olive green or blackish green mildew layer was produced on all inoculated berries. No symptoms were observed on the uninoculated berries. Koch's postulates were fulfilled by reisolating C. cladosporioides from all symptomatic tissues and identifying them by PCR targeting the ACT gene. This is the first description of C. cladosporioides causing grape fruit rot in Xinjiang, China. In recent years, worldwide reports of Cladosporium spp. damaging crops are increasing (Briceño et al., 2008; Walker et al., 2016; Meneses et al., 2018; Robles-Yerena et al., 2019; Ding et al., 2019; Yang et al., 2021). However, relatively few methods of management including some fungicides and biocontrol agents are available in different crops (Wang et al., 2018; Addrah et al., 2019). In view of the important role of Xinjiang in China agricultural production, that should arouse strong attention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-01-21-0080-PDN | DOI Listing |
Phytopathology
January 2025
Centro de Investigaciones Biologicas, Departament of Cellular and Molecular Biology, Ramiro de Maeztu, 9, Madrid, Madrid, Madrid, Spain, 28040.
Brown rot is a disease that affects stone and pome fruit crops worldwide. It is caused by fungal members of the genus , mainly , and . This study presents evidence that, despite having a very similar battery of Cell Wall Degrading Enzymes (CWDEs), the three species behave differently during the early stages of infection, suggesting differences at the regulatory level, which could also explain the differences in host preference among the three species.
View Article and Find Full Text PDFPlant Dis
December 2024
Universidad de las Fuerzas Armadas, Ciencias de la Vida y la Agricultura, Sangolqui, Pichincha, Ecuador;
Bananas are Ecuador's second largest non-oil export product, and the quality of its fruit has established a strong presence in international markets. One-third of the world's banana exports originate from Ecuador. The Ecuadorian banana market is diversified, exporting fruit to various countries worldwide, making it a vital socio-economic and food security support for the country.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Plant Pathology, Faculty of Agriculture, Annamalai University, Chidambaram, India.
Endophytes isolated from seaweeds emerge as promising biocontrol agents against broad spectrum of plant diseases. The endophytic bacteria were isolated from the seaweed (Sargassum wightii) to manage the chilli fruit rot pathogen Fusarium incarnatum. The antifungal activity of the isolated bacteria was tested by dual culture assay and plant growth-promoting activity was also tested by the standard paper towel method.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China.
is the main pathogen of peanut pod rot in China. To investigate the type of toxin and its pathogenic mechanism, a macrolide, brefeldin A, was isolated. The structure of the compound was identified by 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS).
View Article and Find Full Text PDFPlant Dis
December 2024
Dalian Minzu University, College of Environment and Resources, Liaohe West Road No.8, Dalian Economic and Technological Developing Zone, Dalian, China, 116600;
Styphnolobium japonicum (L.) Schott, is an ornamental species of Leguminosae, widely planted as a roadside tree in north regions of China (Kite et al. 2007).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!