Purpose: Treatment planning for children with neuroblastoma requires accurate assessment of prognosis. The most recent Children's Oncology Group (COG) risk classification system used tumor stage as defined by the International Neuroblastoma Staging System. Here, we validate a revised classifier using the International Neuroblastoma Risk Group Staging System (INRGSS) and incorporate segmental chromosome aberrations (SCA) as an additional genomic biomarker.
Methods: Newly diagnosed patients enrolled on the COG neuroblastoma biology study ANBL00B1 between 2007 and 2017 with known age, International Neuroblastoma Staging System, and INRGSS stage were identified (N = 4,832). Tumor status, ploidy, SCA status (1p and 11q), and International Neuroblastoma Pathology Classification histology were determined centrally. Survival analyses were performed for combinations of prognostic factors used in COG risk classification according to the prior version 1, and to validate a revised algorithm (version 2).
Results: Most patients with locoregional tumors had excellent outcomes except for those with image-defined risk factors (INRGSS L2) with amplification (5-year event-free survival and overall survival: 76.3% ± 5.8% and 79.9% ± 5.5%, respectively) or patients age ≥ 18 months with L2 nonamplified tumors with unfavorable International Neuroblastoma Pathology Classification histology (72.7% ± 5.4% and 82.4% ± 4.6%), which includes the majority of L2 patients with SCA. For patients with stage M (metastatic) and MS (metastatic, special) disease, genomic biomarkers affected risk group assignment for those < 12 months () or 12-18 months (, histology, ploidy, and SCA) of age. In a retrospective analysis of patient outcome, the 5-year event-free survival and overall survival using COG version 1 were low-risk: 89.4% ± 1.1% and 97.9% ± 0.5%; intermediate-risk: 86.1% ± 1.3% and 94.9% ± 0.8%; high-risk: 50.8% ± 1.4% and 61.9% ± 1.3%; and using COG version 2 were low-risk: 90.7% ± 1.1% and 97.9% ± 0.5%; intermediate-risk: 85.1% ± 1.4% and 95.8% ± 0.8%; high-risk: 51.2% ± 1.4% and 62.5% ± 1.3%, respectively.
Conclusion: A revised 2021 COG neuroblastoma risk classifier (version 2) that uses the INRGSS and incorporates SCAs has been adopted to prospectively define COG clinical trial eligibility and treatment assignment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500606 | PMC |
http://dx.doi.org/10.1200/JCO.21.00278 | DOI Listing |
J Exp Clin Cancer Res
December 2024
Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
Background: Liquid biopsies offer less burdensome sensitive disease monitoring. Bone marrow (BM) metastases, common in various cancers including neuroblastoma, is associated with poor outcomes. In pediatric high-risk neuroblastoma most patients initially respond to treatment, but in the majority the disease recurs with only 40% long-term survivors, stressing the need for more sensitive detection of disseminated disease during therapy.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China.
Introduction: Cancer-associated fibroblasts (CAFs) are a diverse group of cells that significantly contribute to reshaping the tumor microenvironment (TME), and no research has systematically explored the molecular landscapes of senescence related CAFs (senes CAF) in NB.
Methods: We utilized pan-cancer single cell and spatial transcriptomics analysis to identify the subpopulation of senes CAFs via senescence related genes, exploring its spatial distribution characteristics. Harnessing the maker genes with prognostic significance, we delineated the molecular landscapes of senes CAFs in bulk-seq data.
Eur J Pediatr
December 2024
Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
Circulating tumor cells (CTCs) have served as noninvasive tumor biomarkers in many types of cancer. Here, we detected CTCs in mediastinal neuroblastoma (mNB) patients for use as diagnostic and treatment response predictive biomarkers. We employed a cascaded filter deterministic lateral displacement microfluidic chip (CFD-Chip) to enrich CTCs in peripheral blood from 32 mNB patients and 7 healthy children.
View Article and Find Full Text PDFAnn Nucl Med
December 2024
Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, 100050, China.
Objective: The study aimed to explore the role of fluorine-18-aluminum fluoride-1,4,7-triazacyclononane-1,4,7-triacetic acid-octreotide (F-OC) positron emission tomography/computed tomography (PET/CT) in neuroblastoma (NB) and compared it with Iodine-123 labeled metaiodobenzylguanidine (I-MIBG) scintigraphy with single photon emission computed tomography/computed tomography (SPECT/CT), as well as to investigate the feasibility of the modified Curie scoring system and International Society of Pediatric Oncology Europe Neuroblastoma (SIOPEN) skeleton scoring system applied in F-OC PET/CT.
Methods: Patients with pathologically confirmed NB underwent I-MIBG scintigraphy with SPECT/CT and F-OC PET/CT according the standard imaging protocols. The interval between the two imaging techniques ranged from 0 to 22 days (median interval: 9 days).
Biochem Biophys Res Commun
January 2025
Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan. Electronic address:
Melatonin is a neurohormone that is not only a regulator of circadian cycles, but also a potent antioxidant. Parkinson's disease (PD) is a major neurodegenerative disease that may result from oxidative stress as a part of its pathogenic cascade. Therefore, antioxidants, including melatonin, have attracted attention as potential candidates for neuroprotection against PD-related neurotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!