In vertebrates, single cell analyses of replication timing patterns brought to light a very well controlled program suggesting a tight regulation on initiation sites. Mapping of replication origins with different methods has revealed discrete preferential sites, enriched in promoters and potential G-quadruplex motifs, which can aggregate into initiation zones spanning several tens of kilobases (kb). Another characteristic of replication origins is a nucleosome-free region (NFR). A modified yeast strain containing a humanized origin recognition complex (ORC) fires new origins at NFRs revealing their regulatory role. In cooperation with NFRs, the histone variant H2A.Z facilitates ORC loading through di-methylation of lysine 20 of histone H4. Recent studies using genome editing methods show that efficient initiation sites associated with transcriptional activity can synergize over several tens of kb by establishing physical contacts and lead to the formation of early domains of DNA replication demonstrating a co-regulation between replication initiation and transcription.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bies.202100141 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!