Non-invasive comparative analysis of the spectral composition of energy absorbed by crop species at leaf and plant levels was carried out using the absorption coefficient retrieved from leaf and plant reflectance as an informative metric. In leaves of three species with contrasting leaf structures and photosynthetic pathways (maize, soybean, and rice), the blue, green, and red fractions of leaf absorption coefficients were 48, 20, and 32%, respectively. The fraction of green light in the total budget of light absorbed at the plant level was higher than at the leaf level approaching the size of the red fraction (24% green vs. 25.5% red) and surpassing it inside the canopy. The plant absorption coefficient in the far-red region (700-750 nm) was significant reaching 7-10% of the absorption coefficient in green or red regions. The spectral composition of the absorbed light in the three species was virtually the same. Fractions of light in absorbed PAR remained almost invariant during growing season over a wide range of plant chlorophyll content. Fractions of absorption coefficient in the green, red, and far-red were in accord with published results of quantum yield for CO fixation on an absorbed light basis. The role of green and far-red light in photosynthesis was demonstrated in simple experiments in natural conditions. The results show the potential for using leaf and plant absorption coefficients retrieved from reflectance to quantify photosynthesis in each spectral range.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-021-00863-xDOI Listing

Publication Analysis

Top Keywords

absorption coefficient
20
spectral composition
12
leaf plant
12
green red
12
light photosynthesis
8
three species
8
absorption coefficients
8
light absorbed
8
plant absorption
8
coefficient green
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!