Background: Biofeedback is effective in treating migraines. It is believed to have a beneficial effect on autonomous nervous system activity and render individuals resilient to stressors that may trigger a migraine. However, widespread use of biofeedback is hampered by the need for a trained therapist and specialized equipment. Emerging digital health technology, including smartphones and wearables (mHealth), enables new ways of administering biofeedback. Currently, mHealth interventions for migraine appear feasible, but development processes and usability testing remain insufficient.
Objective: The objective of this study was to evaluate and improve the feasibility and usability of an mHealth biofeedback treatment app for adults with migraine.
Methods: In a prospective development and usability study, 18 adults with migraine completed a 4-week testing period of self-administered therapist-independent biofeedback treatment consisting of a smartphone app connected to wearable sensors (Cerebri, Nordic Brain Tech AS). The app included biofeedback training, instructions for self-delivery, and a headache diary. Two wearable sensors were used to measure surface electromyographic voltage at the trapezius muscle and peripheral skin temperature and heart rate at the right second fingertip. Participants were instructed to complete a daily headache diary entry and biofeedback session of 10 minutes duration. The testing period was preceded by a preusability expectation interview and succeeded by a postusability experience interview. In addition, an evaluation questionnaire was completed at weeks 2 and 4. Adherence was calculated as the proportion of 10-minute sessions completed within the first 28 days of treatment. Usability and feasibility were analyzed and summarized quantitatively and qualitatively.
Results: A total of 391 biofeedback sessions were completed with a median of 25 (IQR 17-28) per participant. The mean adherence rate was 0.76 (SD 0.26). The evaluation questionnaire revealed that functionality and design had the highest scores, whereas engagement and biofeedback were lower. Qualitative preexpectation analysis revealed that participants expected to become better familiar with physical signals and gain more understanding of their migraine attacks and noted that the app should be simple and understandable. Postusability analysis indicated that participants had an overall positive user experience with some suggestions for improvement regarding the design of the wearables and app content. The intervention was safe and tolerable. One case of prespecified adverse events was recorded in which a patient developed a skin rash from the sticky surface electromyography electrodes.
Conclusions: The app underwent a rigorous development process that indicated an overall positive user experience, good usability, and high adherence rate. This study highlights the value of usability testing in the development of mHealth apps.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367148 | PMC |
http://dx.doi.org/10.2196/23229 | DOI Listing |
Life (Basel)
December 2024
Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania.
Donor site morbidity remains a significant concern in free flap microsurgery, with implications that extend beyond immediate postoperative outcomes to affect patients' long-term quality of life. This review explores the multi-faceted impact of donor site morbidity on physical, psychological, social, and occupational well-being, synthesizing findings from the existing literature. Particular attention is given to the functional limitations, sensory deficits, aesthetic outcomes, and chronic pain associated with commonly utilized free flaps.
View Article and Find Full Text PDFLife (Basel)
December 2024
N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Arkhangelsk 163020, Russia.
Heart rate variability biofeedback (HRV BF) training aids adaptation to new climatic, geographical, and social environments. Neurophysiological changes during the HRV BF in individuals from tropical regions studying in the Arctic are not well understood. The aim of this study was to research electroencephalographic (EEG) changes during a single short-term HRV BF session in Indian and Russian students studying in the Russian Arctic.
View Article and Find Full Text PDFBiomedicines
January 2025
Institute of Biophysics, HUN-REN Biological Research Centre, H-6701 Szeged, Hungary.
For the rapid, objective characterization of the physiological stress response, there is currently no generally recognized standard. The stress measurement methods used in practice (e.g.
View Article and Find Full Text PDFHealthcare (Basel)
January 2025
Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison Street, Suite 201, Chicago, IL 60612, USA.
Background/objectives: Gait retraining is widely used in orthopedic rehabilitation to address abnormal movement patterns. However, retaining walking modifications can be challenging without guidance from physical therapists. Real-time auditory biofeedback can help patients learn and maintain gait alterations.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
January 2025
Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada.
Background: To investigate whether patients with binocular reading inhibition due to central vision loss benefit from a new biofeedback (BF) rehabilitation method that aimed at improving fixation stability and at establishing a correspondence between the monocular preferred retinal loci (PRLs) on functioning retina in both eyes.
Methods: Thirty-three patients with bilateral macular disease and with binocular reading inhibition participated in 10 training sessions consisting of 10-min visual stimulation for each eye to stabilize fixation and relocate the PRL (if needed) using the BF module of the MP-1 microperimeter (Nidek Technologies Srl., Vigonza, PD, Italy).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!