Dimensionality engineering is an effective approach to improve the stability and power conversion efficiency (PCE) of perovskite solar cells (PSCs). A two-dimensional (2D) perovskite assembled from bulky organic cations to cover the surface of three-dimensional (3D) perovskite can repel ambient moisture and suppress ion migration across the perovskite film. This work demonstrates how the thermal stability of the bulky organic cation of a 2D perovskite affects the crystallinity of the perovskite and the optoelectrical properties of perovskite solar cells. Structural analysis of (FAPbI)(MAPbBr) (FA = formamidinium ion, MA = methylammonium ion) mixed with a series of bulky cations shows a clear correlation between the structure of the bulky cations and the formation of surface defects in the resultant perovskite films. An organic cation with primary ammonium structure is vulnerable to a deprotonation reaction under typical perovskite-film processing conditions. Decomposition of the bulky cations results in structural defects such as iodide vacancies and metallic lead clusters at the surface of the perovskite film; these defects lead to a nonradiative recombination loss of charge carriers and to severe ion migration during operation of the device. In contrast, a bulky organic cation with a quaternary ammonium structure exhibits superior thermal stability and results in substantially fewer structural defects at the surface of the perovskite film. As a result, the corresponding PSC exhibits the PCE of 21.6% in a reverse current-voltage scan and a stabilized PCE of 20.1% with an excellent lifetime exceeding 1000 h for the encapsulated device under continuous illumination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c07690 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!