Rechargeable seawater battery (SWB) is a unique energy storage system that can directly transform seawater into renewable energy. Placing a desalination compartment between SWB anode and cathode (denoted as seawater battery desalination; SWB-D) enables seawater desalination while charging SWB. Since seawater desalination is a mature technology, primarily occupied by membrane-based processes such as reverse osmosis (RO), the energy cost has to be considered for alternative desalination technologies. So far, the feasibility of the SWB-D system based on the unit cost per desalinated water ($ m ) has been insufficiently discussed. Therefore, this perspective aims to provide this information and offer future research directions based on the detailed cost analysis. Based on the calculations, the current SWB-D system is expected to have an equipment cost of ≈1.02 $ m (lower than 0.60-1.20 $ m of RO), when 96% of the energy is recovered and stable performance for 1000 cycles is achieved. The anion exchange membrane (AEM) and separator contributes greatly to the material cost occupying 50% and 41% of the total cost, respectively. Therefore, future studies focusing on creating low cost AEMs and separators will pave the way for the large-scale application of SWB-D.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456281PMC
http://dx.doi.org/10.1002/advs.202101289DOI Listing

Publication Analysis

Top Keywords

seawater desalination
12
seawater battery
12
energy storage
8
rechargeable seawater
8
future directions
8
swb-d system
8
seawater
7
cost
7
desalination
6
simultaneous energy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!